• 165.00 KB
  • 2023-12-12 04:20:02 发布

吉林省东北师范大学附属中学2014-2015学年高中数学 1-1.1.3.2简单的逻辑联结词复合命题(2)教案 新人教A版选修1-1

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
吉林省东北师范大学附属中学2014-2015学年高中数学1-1.1.3.2简单的逻辑联结词复合命题(2)教案新人教A版选修1-1教学目标:加深对“或”“且”“非”的含义的理解,能利用真值表判断含有复合命题的真假;教学重点:判断复合命题真假的方法;教学难点:对“p或q”复合命题真假判断的方法课型:新授课教学手段:多媒体一、创设情境1.什么叫做命题?(可以判断真假的语句叫命题正确的叫真命题,错误的叫假命题)2.逻辑联结词是什么?(“或”的符号是“∨”、“且”的符号是“∧”、“非”的符号是“┑”,这些词叫做逻辑联结词)3.什么叫做简单命题和复合命题?(不含有逻辑联结词的命题是简单命题由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题)4.复合命题的构成形式是什么?p或q(记作“p∨q”);p且q(记作“p∨q”);非p(记作“┑q”)二、活动尝试问题1:判断下列复合命题的真假(1)8≥7(2)2是偶数且2是质数;(3)不是整数;解:(1)真;(2)真;(3)真;命题的真假结果与命题的结构中的p和q的真假有什么联系吗?这中间是否存在规律?三、师生探究1.“非p”形式的复合命题真假:例1:写出下列命题的非,并判断真假:(1)p:方程x2+1=0有实数根(2)p:存在一个实数x,使得x2-9=0.(3)p:对任意实数x,均有x2-2x+1≥0;(4)p:等腰三角形两底角相等显然,当p为真时,非p为假;当p为假时,非p为真.2.“p且q”形式的复合命题真假:5 例2:判断下列命题的真假:(1)正方形ABCD是矩形,且是菱形;(2)5是10的约数且是15的约数(3)5是10的约数且是8的约数(4)x2-5x=0的根是自然数所以得:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q为假。3.“p或q”形式的复合命题真假:例3:判断下列命题的真假:(1)5是10的约数或是15的约数;(2)5是12的约数或是8的约数;(3)5是12的约数或是15的约数;(4)方程x2-3x-4=0的判别式大于或等于零当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。四、数学理论1.“非p”形式的复合命题真假:当p为真时,非p为假;当p为假时,非p为真.p非p真假假真(真假相反)2.“p且q”形式的复合命题真假:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q为假。pqp且q真真真真假假假真假假假假(一假必假)5 注:1°像上面表示命题真假的表叫真值表;2°由真值表得:“非p”形式复合命题的真假与p的真假相反;“p且q”形式复合命题当p与q同为真时为真,其他情况为假;“p或q”形式复合命题当p与q同为假时为假,其他情况为真;3°真值表是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容。如:p表示“圆周率π是无理数”,q表示“△ABC是直角三角形”,尽管p与q的内容毫无关系,但并不妨碍我们利用真值表判断其命题p或q的真假。4°介绍“或门电路”“与门电路”。或门电路(或)与门电路(且)五、巩固运用例4:判断下列命题的真假:(1)4≥3(2)4≥4(3)4≥5(4)对一切实数分析:(4)为例:第一步:把命题写成“对一切实数或”是p或q形式第二步:其中p是“对一切实数”为真命题;q是“对一切实数”是假命题。第三步:因为p真q假,由真值表得:“对一切实数”是真命题。例5:分别指出由下列各组命题构成的p或q、p且q、非p形式的复合命题的真假:(1)p:2+2=5;q:3>2(2)p:9是质数;q:8是12的约数;(3)p:1∈{1,2};q:{1}{1,2}(4)p:{0};q:{0}解:①p或q:2+2=5或3>2;p且q:2+2=5且3>2;非p:2+25.∵p假q真,∴“p或q”为真,“p且q”为假,“非p”为真.5 ②p或q:9是质数或8是12的约数;p且q:9是质数且8是12的约数;非p:9不是质数.∵p假q假,∴“p或q”为假,“p且q”为假,“非p”为真.③p或q:1∈{1,2}或{1}{1,2};p且q:1∈{1,2}且{1}{1,2};非p:1{1,2}.∵p真q真,∴“p或q”为真,“p且q”为真,“非p”为假.④p或q:φ{0}或φ={0};p且q:φ{0}且φ={0};非p:φ{0}.∵p真q假,∴“p或q”为真,“p且q”为假,“非p”为假.七、课后练习1.命题“正方形的两条对角线互相垂直平分”是()A.简单命题B.非p形式的命题C.p或q形式的命题D.p且q的命题2.如果命题p是假命题,命题q是真命题,则下列错误的是()A.“p且q”是假命题B.“p或q”是真命题C.“非p”是真命题D.“非q”是真命题3.(1)如果命题“p或q”和“非p”都是真命题,则命题q的真假是_________。(2)如果命题“p且q”和“非p”都是假命题,则命题q的真假是_________。4.分别指出下列复合命题的形式及构成它的简单命题,并指出复合命题的真假.(1)5和7是30的约数.(2)菱形的对角线互相垂直平分.(3)8x-5<2无自然数解.5.判断下列命题真假:(1)10≤8;(2)π为无理数且为实数;(3)2+2=5或3>2.(4)若A∩B=,则A=或B=.6.已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围。八、参考答案:(1)若命题p真而q为假则有5 (2)若命题p真而q为假,则有所以m≥3或1<m≤25