• 154.00 KB
  • 2023-12-15 05:20:03 发布

福建省漳州市芗城中学高中数学 4.2.3直线与圆的方程的应用教案 新人教A版必修2

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
福建省漳州市芗城中学高中数学4.2.3直线与圆的方程的应用教案新人教A版必修2一、教学目标1、知识与技能:(1)理解直线与圆的位置关系的几何性质;(2)利用平面直角坐标系解决直线与圆的位置关系;(3)会用“数形结合”的数学思想解决问题.2、过程与方法:经历用坐标法解决几何问题的过程,体会用“数”解决“形”的问题的具体应用。3、情感态度与价值观:通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力。二、教学重点、难点:直线与圆的方程的应用。三、教学过程(一)实例引入问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km处,受影响的半径长为30km的圆形区域。已知港口位于台风中心正北40km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?(二)解决问题(1)建立坐标系:以台风中心为原点O,东西方向为x轴,建立直角坐标系(如图);(2)将平面几何问题转化为代数问题:圆形区域所在圆O的方程为:;轮船航线所在直线l的方程为:;问题归结为判断圆O与直线l有无公共点。(3)解决代数问题:;(4)获得几何结论:这艘轮船不会受到台风的影响。总结:用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论。(三)应用举例例2、如图是某圆拱形桥一孔圆拱的示意图,这个圆的圆拱跨度AB=20m,拱高OP=4m,建造时每间隔4m需要用一根支柱支撑,求支柱A2P2的高度。(精确到0.01m)分析:(1)建立坐标系(如图);(2)如何求圆拱所在圆的方程?思路一:设圆的标准方程:圆心在y轴上:2 ,圆过两点(10,0),(0,4),所以。思路二:设圆的一般方程:,圆过三点(10,0),(0,4)(–10,0),所以圆的方程为。(3)直线A2P2的方程:x=–2;(4)如何求点P2的坐标?联立方程组。(5)作答:支柱A2P2的高度为3.86m。例3、已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半。已知:ABCD是圆O1的内接四边形,AC⊥BD,O1E⊥AD,垂足为E。求证:O1E=BC。2