• 143.00 KB
  • 2023-12-15 05:40:02 发布

福建省长乐第一中学2014高中数学 第二章《2.1.2演绎推理》教案 新人教A版选修2-2

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
"福建省长乐第一中学2014高中数学第二章《2.1.2演绎推理》教案新人教A版选修2-2"教学目标:1.知识与技能:了解演绎推理的含义。2.过程与方法:能正确地运用演绎推理进行简单的推理。3.情感、态度与价值观:了解合情推理与演绎推理之间的联系与差别。教学重点:正确地运用演绎推理进行简单的推理教学难点:了解合情推理与演绎推理之间的联系与差别。教具准备:与教材内容相关的资料。教学设想:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.教学过程:学生探究过程:一.复习:合情推理归纳推理从特殊到一般类比推理从特殊到特殊从具体问题出发――观察、分析比较、联想――归纳。类比――提出猜想二.问题情境。观察与思考建构数学演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括  ⑴大前提---已知的一般原理;        ⑵小前提---所研究的特殊情况;       ⑶结论-----据一般原理,对特殊情况做出的判断.三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)3.三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.[四,数学运用例1.把“函数的图象是一条抛物线”恢复成完全三段论.3 解:二次函数的图象是一条抛物线(大前提)例2.已知lg2=m,计算lg0.8解(1)lgan=nlga(a>0)---------大前提lg8=lg23————小前提lg8=3lg2————结论lg(a/b)=lga-lgb(a>0,b>0)——大前提lg0.8=lg(8/10)——-小前提lg0.8=lg(8/10)——结论例3.如图;在锐角三角形ABC中,AD⊥BC,BE⊥AC,D,E是垂足,求证AB的中点M到D,E的距离相等.解:(1)因为有一个内角是只直角的三角形是直角三角形,——大前提在△ABC中,AD⊥BC,即∠ADB=90°—-小前提所以△ABD是直角三角形——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提因为DM是直角三角形斜边上的中线,——小前提所以DM=AB——结论同理EM=AB所以DM=EM.由此可见,应用三段论解决问题时,首先应该明确什么是大前提和小前提.但为了叙述简洁,如果大前提是显然的,则可以省略.再来看一个例子.(1)上面的推理形式正确吗?(2)推理的结论正确吗?为什么?上述推理的形式正确,但大前提是错误的(因为当时,指数函数是减函数),所以所得的结论是错误的.“三段论”3 是由古希腊的亚里士多德创立的.亚里士多德还提出了用演绎推理来建立各门学科体系的思想.例如,欧几里得的《原本》.就是一个典型的演绎系统,它从10条公理和公设出发,利用演绎推理,推出所有其他命题.像这种尽可能少地选取原始概念和一组不加证明的原始命题(公理、公设),以此为出发点,应用演绎推理,推出尽可能多的结论的方法,称为公理化方法.巩固练习:第35页练习第1,2,3,4,题作业:第35页练习第5题。习题2。1第4题。教学反思:3