- 348.50 KB
- 2023-12-12 07:50:02 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
山东省泰安市肥城市第三中学高考数学一轮复习函数的单调性与最值教案学习内容学习指导、即时感悟学习目标:1、理解函数的单调性、最大值、最小值及其几何意义.2、会用函数图象理解和研究函数的性质.学习重点:函数的单调性、最大值、最小值及其应用学习难点:函数的单调性、最大值、最小值及其应用学习方法:自主合作探究学习方向引入:利用函数的单调性求单调区间、比较大小、解不等式、求参数的取值范围是历年高考考查的热点,题型多以选择题和填空题为主,与导数交汇命题会以解答题的形式出现。回顾﹒预习知识梳理:1、单调函数的定义设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值,,当<时,①若,则f(x)在上是增函数.②若,则f(x)在上是减函数.2、单调区间的定义若函数f(x)在区间D上是或,则称函数f(x)在这一区间上具有(严格的)单调性,叫做f(x)的单调区间.3、用定义证明函数单调性的一般步骤①取值:即设,是该区间内的任意两个值,且<.②作差:即f()-f()(或f()-f()),并通过通分、配方、因式分解等方法,向有利于判断差的符号的方向变形.③定号:根据给定的区间和-的符号,确定差f()-f()(或f()-f())的符号.当符号不确定时,可以进行分类讨论.④判断:根据定义得出结论4、求函数的单调性或单调区间的方法①利用已知函数的单调性.②定义法:先求定义域,再利用单调性定义.③图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性写出它的单调区间.自主学习9
④导数法:利用导数取值的正负确定函数的单调区间.5.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有.(2)存在x0∈I,使得.那么,我们称M是函数y=f(x)的.最值与函数的值域有何关系?【提示】函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在。(1)求一个函数的最值时,应首先考虑函数的定义域.(2)函数的最值是函数值域中的一个取值,是自变量x取了某个值时的对应值,故函数取得最值时,一定有相应的x的值.前提自测1.函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则( D )2.若函数y=ax与y=-在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是( B )A.增函数B.减函数C.先增后减D.先减后增.3.函数=在区间上是单调函数,则实数的取值范围是a≥2.4.设x1,x2为y=f(x)的定义域内的任意两个变量,有以下几个命题:①(x1-x2)[f(x1)-f(x2)]>0;②(x1-x2)[f(x1)-f(x2)]<0;其中能推出函数y=f(x)为增函数的命题为__①_③_____5.已知函数在上有最大值3,最小值2,则正数的取值范围1≤m≤2.6.证明函数在上是增函数9
自主﹒合作﹒探究例1答案:a>0:f(x)为减函数。a<0:f(x)为增函数。例2.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,求实数m的取值范围.解析:f(x)是奇函数则f(x)=-f(-x)f(m-1)+f(2m-1)>0f(m-1)>-f(2m-1)f(m-1)>f(1-2m)-2x-1x²+x-2<0(x+2)(x-1)<0-2a/3>03/2>a>0f(x)的最小值f(1)=2a-4注意此时f(a)=f(1)<-1④当1>a/3>=1/23>a>=3/2f(x)的最小值是f(0)=-1综上f(a)的最大值是-1例5.某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=其中x是仪器的月产量.(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)解:(1)设月产量为x台,则总成本为20000+100x,从而 9
(2)当0≤x≤400时,, ∴当x=300时,有最大值25000; 当x>400时,f(x)=60000-100x是减函数, f(x)<60000-100×400<25000。 ∴当x=300时,f(x)的最大值为25000。 答:每月生产300台仪器时,利润最大,最大利润为25000元。当堂达标:1.(2009年福建卷)下列函数f(x)中,满足“对任意的x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是( A )2.若与在区间上都是减函数,则的取值范围是(D)A.B.C.D.3.如果函数f(x)=ax2+2x-3在区间(-∞,4)上是单调递增的,则实数a的取值范围是___-≤a≤0_______.4.已知函数f(x)=x2+bx+c的图象的对称轴为直线x=1,则( B )A.f(-1)=3/4函数y=(x)在[0,+∞]上是减函数所以f(3/4)>=f(a^2-a+1)8.设是定义在上的增函数,,且,求满足不等式的x的取值范围.由f(xy)=f(x)+f(y)可得f(x)+f(x-3)=f(x*(x-3))又2=1+1=f(2)+f(2)=f(4)所以f(x)+f(x-3)<2等价于f(x*(x-3))0故f(x)=a-1/x;设x1,x2>0且x2>x1,则f(x2)-f(x1)=(a-1/x2)-(a-1/x1)=1/x1-1/x2=(x2-x1)/x1x2∵x2-x1>0,x1x2>0,故f(x2)-f(x1)>0,即f(x2)>f(x1)故函数f(x)在(0,+∞)上是增函数(2)f(x)<2x,即a-(1/|x|)<2x,又x>1即a<2x+1/x设g(x)=2x+1/x(x>1),令x2>x1,则g(x2)-g(x1)=2x2-1/x1+2x1-1/x2=(x2-x1)(2x1x2-1)/(x1x2)x2>x1>1,即x2-x1>0,2x1x2-1>0所以g(x2)-g(x1)>0所以g(x)为增函数,所以g(x)>g(1)=3所以a≤g(1)=3,即a≤3(C)6.已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明:取X1∈R,则(X1+1)∈R,且X1+1>X1,则f(X1+1)-f(X1)=f(X1)+f(1)-f(X1)=f(1)=-2/3<0即当X1+1>X1时,f(X1+1)
您可能关注的文档
- 山东省泰安市肥城市第三中学高考数学一轮复习 函数的单调性与最值教案
- 数学高考复习名师精品教案:第45课时:第六章 不等式-不等式的概念与性质
- 山东省临朐县实验中学高中数学 向量的加法教案 新人教A版必修4
- 山东省临朐县实验中学高中数学 1.2.1 任意角的三角函数教案 新人教A版必修4
- 山东省聊城市某重点高中2013-2014学年高三上学期期初分班教学测试文科数学试题 Word版含答案
- 山东省泰安市肥城市第三中学高考数学一轮复习 条件概率教案
- 山东省泰安市肥城市第三中学高考数学一轮复习 函数奇偶性 周期教案
- 往届高等数学试题及答案
- 山东省泰安市肥城市第三中学高考数学一轮复习 变量间的相关关系、统计案例教案
- 山东省泰安市肥城市第三中学高考数学一轮复习 一元二次不等式及解法教案