• 1.06 MB
  • 2023-11-19 04:40:02 发布

15.1.1 从分数到分式2-人教版数学八年级上册教学资源

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
15.1 分式 15.1.1 从分数到分式 教学目标 1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分. 2.使学生能够求出分式有意义的条件. 3.准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点. 教学过程 1、 情境引入:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷? (1)这一问题中有哪些等量关系? (2)如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要____________个月,实际完成一期工程用了____________个月;根据题意,可得方程 ; 2、解读探究: ,, 认真观察上面的式子,方程有什么特点? 做一做1.正n边形的每个内角为 度 2一箱苹果售价a元,箱子与苹果的总质量为mkg,箱子的质量为nkg,则每千克苹果售价是多少元? 上面问题中出现的代数式,,;它们有什么共同特征? (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论: 的分母. (2)由学生举几个分式的例子. (3)学生小结分式的概念中应注意的问题. ①分母中含有字母. ②如同分数一样,分式的分母不能为零. (4)问:何时分式的值为零?(以(2)中学生举出的分式为例进行讨论) 例1(1)当a=1,2时,求分式的值; (1) 当a取何值时,分式有意义? 解:(1)当a=1时,当a=2时 (2)当分母的值等于零时,分式没有意义,除此以外,分式都有意义。 由分母2a=0,得a=0,所以,当a取零以外的任何实数时,分式有意义。 例2当x取何值时,下列分式有意义? 思考:若把题目要求改为:“当x取何值时下列分式无意义?”该怎样做? 例3 当x取何值时,下列分式的值为零? 解:由分子x+3=0得x=-3. 而当x=-3时,分母2x-7=-6-7≠0. ∴当x=-3时,原分式值为零. 小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零. 课堂小结 本节课你学到了哪些知识和方法? 1.分式与分数的区别. 2.分式何时有意义? 3.分式何时值为零?