• 1.04 MB
  • 2023-11-19 03:40:02 发布

14.1.3 积的乘方1-人教版数学八年级上册教学资源

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
14.1.3 积的乘方 1.掌握积的乘方的运算法则.(重点) 2.掌握积的乘方的推导过程,并能灵活运用.(难点)                     一、情境导入 1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么? 学生积极举手回答: 同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加. 幂的乘方公式:幂的乘方,底数不变,指数相乘. 2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方. 二、合作探究 探究点一:积的乘方 【类型一】 直接利用积的乘方法则进行计算 计算:(1)(-5ab)3;(2)-(3x2y)2; (3)(-ab2c3)3;(4)(-xmy3m)2. 解析:直接应用积的乘方法则计算即可. 解:(1)(-5ab)3=(-5)3a3b3=-125a3b3; (2)-(3x2y)2=-32x4y2=-9x4y2; (3)(-ab2c3)3=(-)3a3b6c9=-a3b6c9; (4)(-xmy3m)2=(-1)2x2my6m=x2my6m. 方法总结:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方. 【类型二】 积的乘方在实际中的应用 太阳可以近似地看作是球体,如果用V、R分别代表球的体积和半径,那么V=πR3,太阳的半径约为6105千米,它的体积大约是多少立方千米?(π取3) 解析:将R=6105千米代入V=πR3,即可求得答案. 解:∵R=6105千米,∴V=πR3=π(6105)3=8.641017(立方千米). 答:它的体积大约是8.641017立方千米. 方法总结:读懂题目信息,理解球的体积公式并熟记积的乘方的性质是解题的关键. 【类型三】 含积的乘方的混合运算 计算:(1)-4xy2(xy2)2(-2x2)3; (2)(-a3b6)2+(-a2b4)3. 解析:(1)先进行积的乘方,然后根据同底数幂的乘法法则求解;(2)先进行积的乘方和幂的乘方,然后合并. 解:(1)原式=4xy2x2y48x6=8x9y6; (2)原式=a6b12-a6b12=0. 方法总结:先算积的乘方,再算乘法,最后算加减,然后合并同类项. 探究点二:积的乘方的逆运算 【类型一】 利用积的乘方的逆运算进行简便运算 计算:()2015()2016. 解析:将()2016转化为()2015,再逆用积的乘方公式进行计算. 解:原式=()2015()2015=()2015=. 方法总结:对公式anbn=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.运用此公式可进行简便运算. 【类型二】 利用积的乘方比较数的大小 试比较大小:213310与210312. 解:∵213310=23(23)10,210312=32(23)10,23<32,∴213310<210312. 方法总结:利用积的乘方,转化成同底数的同指数的幂是解答此类问题的关键. 三、板书设计 积的乘方 积的乘方公式:(ab)n=anbn(n为正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:anbn=(ab)n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n为奇数时,(-a)n=-an(n为正整数);当n为偶数时,(-a)n=an(n为正整数).