- 1.25 MB
- 2023-01-10 14:38:44 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
3.2.4函数模型的应用实例(二)(一)教学目标1.知识与技能掌握应用指数型,拟合型函数模型解答实际应用问题的题型特征,提升学生解决简单的实际应用问题的能力.2.过程与方法经历实际应用问题的求解过程,体验指数函数模型、拟合函数模型的题型特征,学会运用函数知识解决实际问题.3.情感、态度与价值观了解数学知识来源于生活,又服务于实际,从而培养学生的数学应用意识,提高学生学习数学的兴趣.(二)教学重点与难点重点:指数函数模型、拟合函数模型的应用难点:依据题设情境,建立函数模型.(三)教学方法师生合作探究解题方法,总结解题规律.老师启发诱导,学生动手尝试相结合.从而形式应用指数函数模型,似合函数模型解决实际问题的技能.(四)教学过程教学环节教学内容师生互动设计意图复习引入例1某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如表所示:销售单价/元6789日均销售量/桶480440400360销售单价/元101112日均销售量/桶320280240请据以上数据作出分析,这个经营部怎样定价才能获得最大利润?师生合作回顾一元一次函数,一元二次函数.分段函数建模实际问题的求解思路“审、建、解、检”生:尝试解答例1解:根据表,销售单价每增加1元,日均销售量就减少40桶.设在进价基础上增加x元后,日均销售利润为y元,而在此情况下的日均销售量就为480–40(x–1)=520–40x(桶)由于x>0且520–40x>0,即0<x<13,于是可得y=(520–40x)x–200=–40x2+520x–200,0<x<13易知,当x=6.5时,y有最大值.所以,只需将销售单价定为11.5元,就可获得最大的利润.以旧引新激发兴趣,再现应用技能.,师:帮助课本剖析解答过程,回顾反思上节课的学习成果应用举例4.指数型函数模型的应用例1人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型:y=y0ert,其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:年份19501951195219531954人数/万人5519656300574825879660266年份19551956195719581959人数/万人6145662828645636599467207(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?例2某地区不同身高的未成年男性的体重平均值如表身高/cm60708090100110体重/kg6.137.909.9012.1515.0217.50身高/cm120130140150160170体重/kg20.9226.8631.1138.8547.2555.05(1)根据表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重ykg与身高xcm的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?例2解答:(1)以身高为横坐标,体重为纵坐标,画出散点图.根据点的分布特征,可考虑以y=a·bx作为刻画这个地区未成年男性的体重与身高关系的函数模型.师:形如y=bacx函数为指数型函数,生产生活中以此函数构建模型的实例很多(如例1)生:在老师的引导下审题、建模、求解、检验、尝试完成此例师生合作总结解答思路及题型特征师生:共同完成例1解答:(1)设1951~1959年的人口增长率分别为r1,r2,…,r9.由55196(1+r1)=56300,可得1951年的人口增长率r1≈0.0200.同理可得,r2≈0.0210,r3≈0.0229,r4≈0.0250,r5≈0.0197,r6≈0.0223,r7≈0.0276,r8≈0.0222,r9≈0.0184.于是,1951~1959年期间,我国人口的年均增长率为r(r1+r2+…+r9)÷9≈0.0221.令y0=55196,则我国在1950~1959年期间的人口增长模型为y=55196e0.0221t,t∈N.根据表中的数据作出散点图并作出函数y=55196e0.0221t(t∈N)的图象由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.(2)将y=130000代入y=55196e0.0221t,由计算器可得t≈38.76.通过实例求解,提炼方法整合思路提升能力.,如果取其中的两组数据(70,7.90),(160,47.25),代入y=a·bx得:,用计算器算得a≈2,b≈1.02.这样,我们就得到一个函数模型:y=2×1.02x.将已知数据代入上述函数解析式,或作出上述函数的图象,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系.(2)将x=175代入y=2×1.02x得y=2×1.02175,由计算器算得y≈63.98.由于78÷63.98≈1.22>1.2,所以,这个男生偏胖.归纳总结:通过建立函数模型,解决实际实际问题的基本过程:所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力.巩固练习练习1已知1650年世界人口为5亿,当时人口的年增长率为0.3%;1970年世界人口为36亿,当时人口的年增长率为2.1%.(1)用马尔萨斯人口模型计算,什么时候世界人口是1650年的2倍?什么时候世界人口是1970年的2倍?解答:(1)已知人口模型为y=y0en,其中y0表示t=0时的人口数,r表示人口的年增长率.若按1650年世界人口5亿,年增长率为0.3%估计,有y=5e0.003t.固化能力强化技巧,(2)实际上,1850年以前世界人口就超过了10亿;而2003年世界人口还没有达到72亿.你对同样的模型得出的两个结果有何看法?当y=10时,解得t≈231.所以,1881年世界人口约为1650年的2倍.同理可知,2003年世界人口数约为1970年的2倍.(2)由此看出,此模型不太适宜估计跨度时间非常大的人口增长情况.应用举例4.拟合函数模型例3某皮鞋厂从今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双.由于产品质量好,款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受定单不至于过多或过少,需要估计以后几个月的产量.厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人.假如你是厂长,就月份x,产量y给出四种函数模型:y=ax+b,y=ax2+bx+c,,y=abx+c,你将利用哪一种模型去估算以后几个月的产量?归纳总结:所以y=–0.8×0.54+1.4=1.35本题是对数据进行函数模拟,选择最符合的模拟函数.一般思路要画出散点图,然后作出模拟函数的图象,选择适合的几种函数类型后,再加以验证.函数模型的建立是最大的难点,另外运算量较大,必须借助计算机进行数据处理,函数模型的可靠性与合理性既需要数据检验,又必须与具体实际结合起来.生:动手实践解题此例学生四个代表分别板书四种函数模型.师:点评学生解答,总结,回答问题解析:本题是通过数据验证,确定系数,然后分析确定函数的变化情况,最终找出与实际最接近的函数模型.由题知A(1,1),B(2,1.2),C (3,1.3),D(4,1.37).(1)设模拟函数为y=ax+b,将B、C两点的坐标代入函数式,有所以得y=0.1x+1.(2)设y=ax2+bx+c,将A,B,C三点代入,有所以y=–0.05x2+0.35x+0.7.(3)设,将A,B两点的坐标代入,有所以(4)设y=abx+c,将A,B,C三点的坐标代入,得用已学函数模型综合求解问题,提升综合应用模型的能力.,巩固练习练习2某地区今年1月,2月,3月患某种传染病的人数分别为52,61,68.为了预测以后各月的患病人数,甲选择了模型y=ax2+bx+c,乙选择了模型y=pqx+r,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数.结果4月,5月,6月份的患病人分别为74,78,83,你认为谁选择的模型较好?学生口述解题思路老师借助电脑解答问题(1)列表(2)画散点图.(3)确定函数模型.甲:y1=–x2+12x+41,乙:y2=–52.07×0.778x+92.5(4)做出函数图象进行比较.计算x=6时,y1=77,y2=80.9.可见,乙选择的模型较好.固化解题技巧归纳总结1.数学模型师生合作交流归纳知识,整合解题体会整合理论培养学习能力,所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述的一种数学结构.数学模型剔除了事物中一切与研究目标无本质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是最重要的数学模型,用函数解决方程问题,使求解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁.2.关于数学建模中的假设就一般的数学建模来说,是离不开假设的,如果在问题的原始状态下不作任何假设,将所有的变化因素全部考虑进去,对于稍复杂一点的问题就无法下手了.假设的作用主要表现在以下几个方面:(1)进一步明确模型中需要考虑的因素和它们在问题中的作用.通常,初步接触一个问题,会觉得围绕它的因素非常多,经仔细分析筛查,发现有的因素并无实质联系,有的因素是无关紧要的,排除这些因素,问题则越发清晰明朗.在假设时就可以设这些因素不需考虑.(2)降低解题难度.由于每一个解题者的能力不同,经过适当的假设就可以有能力建立数学模型,并且得到相应的解.一般情况下,是先在最简单的情形下组建模型,然后通过不断地调整假设使模型尽可能地接近实际,得到更满意的解.课后练习3.2第四课时习案学生独立完成固化知识提高能力