- 96.00 KB
- 2023-12-09 23:10:02 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
www.ks5u.com教学目标:1.理解数学归纳法的概念,掌握数学归纳法的证明步骤.2.通过数学归纳法的学习,体会用不完全归纳法发现规律,用数学归纳法证明规律的途径.教学重点:1.能用数学归纳法证明一些简单的数学命题.2.难点:归纳→猜想→证明.教学过程:一、预习1.思考并证明:平面内有n(n≥2)条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数为f(n)=.2.小结:数学归纳法是一种证明与正整数有关的数学命题的重要方法.主要有两个步骤、一个结论:(1)证明当n取第一个值n0(如n0=1或2等)时结论正确.(2)假设n=k时,结论正确,证明n=k+1时结论也正确(用上假设,递推才真).(3)由(1),(2)得出结论(结论写明,才算完整).其中第一步是递推的基础,解决了特殊性;第二步是递推的依据,解决了从有限到无限的过渡.这两步缺一不可.只有第一步,属不完全归纳法;只有第二步,假设就失去了基础.二、课堂训练例1 设n∈N*,F(n)=5n+2×3n_1+1,(1)当n=1,2,3,4时,计算f(n)的值.(2)你对f(n)的值有何猜想?用数学归纳法证明你的猜想.例2 在平面上画n
条直线,且任何两条直线都相交,其中任何三条直线不共点.问:这n条直线将平面分成多少个部分?三、巩固练习1.用数学归纳法证明:1+2+22+…+2n_1=2n-1(n∈N*).2.下面是某同学用数学归纳法证明命题的过程,综上,原命题成立.3.求证:(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N*).四、课堂小结①归纳法:由特殊到一般,是数学发现的重要方法;②数学归纳法的科学性:基础正确;可传递;③数学归纳法证题程序化步骤:两个步骤,一个结论;④数学归纳法优点:克服了完全归纳法的繁杂、不可行的缺点,又克服了不完全归纳法结论不可靠的不足,是一种科学方法,使我们认识到事情由简到繁、由特殊到一般、由有限到无穷.五、作业课本P94第6,7,8题.