- 254.00 KB
- 2023-11-20 06:20:02 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
24.1.2 垂直于弦的直径
一、课前预习 (5分钟训练)
1.如图24-1-2-1,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,则可推出的相等关系是___________.
图24-1-2-1 图24-1-2-2 图24-1-2-3
2.圆中一条弦把和它垂直的直径分成3 cm和4 cm两部分,则这条弦弦长为__________.
3.判断正误.
(1)直径是圆的对称轴; (2)平分弦的直径垂直于弦.
4.圆O的半径OA=6,OA的垂直平分线交圆O于B、C,那么弦BC的长等于___________.
二、课中强化(10分钟训练)
1.圆是轴对称图形,它的对称轴是______________.
2.如图24-1-2-2,在⊙O中,直径MN垂直于弦AB,垂足为C,图中相等的线段有__________,相等的劣弧有______________.
3.在图24-1-2-3中,弦AB的长为24 cm,弦心距OC=5 cm,则⊙O的半径R=__________ cm.
4.如图24-1-2-4所示,直径为10 cm的圆中,圆心到弦AB的距离为4 cm.求弦AB的长.
图24-1-2-4
三、课后巩固(30分钟训练)
1.如图24-1-2-5,⊙O的半径OA=3,以点A为圆心,OA的长为半径画弧交⊙O于B、C,则BC等于( )
A.3 B.3 C. D.
图24-1-2-5 图24-1-2-6
2.如图24-1-2-6,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8 cm,OC=5 cm,则OD的长是( )
A.3 cm B.2.5 cm C.2 cm D.1 cm
3.⊙O半径为10,弦AB=12,CD=16,且AB∥CD.求AB与CD之间的距离.
4.如图24-1-2-7所示,秋千链子的长度为3 m,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60,则秋千踏板与地面的最大距离约为多少?
图24-1-2-7
5. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高的圆拱的跨度为110米,拱高为22米,如图(2),那么这个圆拱所在圆的直径为___________米.
图24-1-2-8
6.如图24-1-2-9,要把破残的圆片复制完整,已知弧上三点A、B、C.
(1)用尺规作图法,找出弧BAC所在圆的圆心O;(保留作图痕迹,不写作法)
(2)设△ABC为等腰三角形,底边BC=10 cm,腰AB=6 cm,求圆片的半径R;(结果保留根号)
(3)若在(2)题中的R满足n<R<m(m、n为正整数),试估算m和n的值.
图24-1-2-9
7.⊙O的直径为10,弦AB的长为8,P是弦AB上的一个动点,求OP长的取值范围.
思路分析:求出OP长的最小值和最大值即得范围,本题考查垂径定理及勾股定理.该题创新点在于把线段OP看作是一个变量,在动态中确定OP的最大值和最小值.事实上只需作OM⊥AB,求得OM即可.
您可能关注的文档
- 24.1.2 垂直于弦的直径-人教版数学九年级上册教学资源
- 25.1.2概率-人教版数学九年级上册教学资源
- 24.2.2 第2课时 切线的判定与性质-人教版数学九年级上册教学资源
- 3.3 第1课时 利用去括号解一元一次方程2-人教版数学七年级上册教学资源
- 23.2 中心对称复习1-人教版数学九年级上册教学资源
- 24.1.4圆周角2-人教版数学九年级上册教学资源
- 3.2 第1课时 用合并同类项的方法解一元一次方程-人教版数学七年级上册教学资源
- 24.3正多边形和圆-人教版数学九年级上册教学资源
- 28.2.2 第2课时 利用仰俯角解直角三角形-人教版数学九年级下册教学资源
- 23.1 第1课时 图形的旋转-人教版数学九年级上册教学资源