• 27.57 KB
  • 2023-06-11 10:08:01 发布

人教新课标音乐四年级下册红蜻蜓2教学设计

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。

解不可微函数优化的一种混合遗传算法

摘 要 在浮点编码遗传算法中加入Powell方法,构成适于不可微函数全局优化的混合遗传算法。混合算法改善了遗传算法的局部搜索能力,显著提高了遗传算法求得全局解的概率。由于只利用函数值信息,混合算法是一种求解可微和不可微函数全局优化问题的通用方法。 关键词 全局最优;混合算法;遗传算法;Powell方法
引言 不可微非线性函数优化问题具有广泛的工程和应用背景,如结构设
计中使 结构内最大应力最小而归结为极大极小优化(minmax)问题、数据鲁棒性拟合中采取最小绝对值准则建立失拟函数等。其求解方法的研究越来越受到人们的重视,常用的算法有模式搜索法、单纯形法、Powell方法等,但是这些方法都是局部优化方法,优化结果与初值有关。 近年来,由Holland研究自然现象与人工系统的自适应行为时,借鉴“优胜劣汰”的生物进化与遗传思想而首先提出的遗传算法,是一种较为有效的求不可微非线性函数全局最优解的方法。以遗传算法为代表的进化算法发展很快,在各种问题的求解与应用中展现了其特点和魅力,但是其理论基础还不完善,在理论和应用上暴露出诸多不足和缺陷,如存在收敛速度慢且存在早熟收敛问题[1,2]。为克服这一问题,早在1989年Goldberg就提出混合方法的框架[2],把GA与传统的、基于知识的启发式搜索技术相结合,来改善基本遗传算法的局部搜索能力,使遗传算法离开早熟收敛状态而继续接近全局最优解。近来,文献[3]和[4]在总结分析已有发展成果的基础上,均指出充分利用遗传算法的大范围搜索性能,与快速收敛的局部优化方法结合构成新的全局优化方法,是目前有待集中研究的问题之一,这种混合策略可以从根本上提高遗传算法计算性能。文献[5]采用牛顿-莱佛森法和遗传算法进行杂交求解旅行商问题,文献[6]把最速下降法与遗传算法相结合来求解连续可微函数优化问题,均取得良好的计算效果,但是不适于不可微函数优化问题。
本文提出把Powell方法融入浮点编码遗传算法,把Powell方法作为与选择、交叉、变异平行的一个算子,构成适于求解不可微函数优化问题的混合遗传算法,该方法可以较好解决遗传算法的早熟收敛问题。数值算例对混合方法的有效性进行了验证。
2 混合遗传算法
编码是遗传算法应用中的首要问题,与二进制编码比较,由于浮点编码遗传算法有精度高,便于大空间搜索的优点,浮点编码越来越受到重视[7]。考虑非线性不可微函数优化问题(1),式中 为变量个数, 、 分别是第 个变量 的下界和上界。把Powell方法嵌入到浮点编码遗传算法中,得到求解问题(1)如下混合遗传算法:
(1) step1 给遗传算法参数赋值。这些参数包括种群规模m,变量个数n,交叉概率pc、变异概率pm,进行Powell搜索的概率pPowell和遗传计算所允许的最大代数T。
Step2 随机产生初始群体,并计算其适应值。首先第i个个体适应值取为fi’=fmax - fi,fi是第i个个体对应的目标函数值,fmax为当前种群成员的最大目标函数值,i=1,2,…,m。然后按Goldberg线性比例变换模型[2] 式(2)进行拉伸。
fi’= a×fi’ b ( fi ³ 0 )
(2) step3 执执行比例选择算子进行选择操作。
step4 按概率 执行算术交叉算子进行交叉操作。即对于选择的两个母体 和 ,算术交叉产生的两个子代为 和 , 是[0,1]上的随机数,1 , 。
step5 按照概率
行非均匀变异算子[8]。若个体 的元素 被选择变异, ,则变异结果为 ,其中 ,
(3)
(4)
返回区间[ , ]里的一个值,使 靠近0的概率随代数 的增加而增加。这一性质使算子在初始阶段均匀地搜索空间,而在后面阶段非常局部化。 是[ , ]之间的随机数, 为最大代数, 为决定非均匀度的系统参数。...