• 98.00 KB
  • 2023-12-14 05:50:02 发布

河北省二十冶综合学校高考数学总复习 两点间的距离学案

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
河北省二十冶综合学校高中分校高考数学总复习两点间的距离学案一、学习目标1.掌握直角坐标系两点间距离,用坐标法证明简单的几何问题.2.通过两点间距离公式的推导,能更充分体会数形结合的优越性.3.体会事物之间的内在联系,,能用代数方法解决几何问题.学习重点:①平面内两点间的距离公式.  ②如何建立适当的直角坐标系.学习难点:如何根据具体情况建立适当的直角坐标系来解决问题二、学习过程问题已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1(x1,y1),P2(x2,y2)的距离|P1P2|?探究一平面内两点间的距离公式问题(1)如果A、B是x轴上两点,C、D是y轴上两点,它们的坐标分别是xA、xB、yC、yD,那么|AB|、|CD|怎样求?(2)求B(3,4)到原点的距离.(3)设A(x1,y1),B(x2,y2),求|AB|.(4)同学们已知道两点的距离公式,请大家回忆一下我们怎样知道的(回忆过程)得到两点P1(x1,y1)、P2(x2,y2)的距离公式:|P1P2|=例1如图2,有一线段的长度是13,它的一个端点是A(-4,8),另一个端点B的纵坐标是3,求这个端点的横坐标.图2变式训练1课本106页练习第一题例2已知点A(-1,2),B(2,),在x轴上求一点,使|PA|=|PB|,并求|PA|的值.变式训练2课本106页练习第二题.2 探究二建立适当的坐标系应用代数问题解决几何问题例3证明平行四边行四条边的平方和等于两条对角线的平方和.上述解决问题的基本步骤学生归纳如下:学习小结1.坐标法的步骤:①建立适当的平面直角坐标系,用坐标表示有关的量;②进行有关的代数运算;③把代数运算结果“翻译”成几何关系.当堂检测1.在x轴上求一点P,使P点到A(-4,3)和B(2,6)两点的距离相等.2.求在数轴上,与两点A(-1,3),B(2,4)等距离的点的坐标.3.已知三点A(3,2)、B(0,5)、C(4,6),则△ABC的形状是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形4.以A(5,5)、B(1,4)、C(4,1)为顶点的△ABC的形状是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形2