• 176.00 KB
  • 2023-12-12 17:10:07 发布

湖北省恩施巴东县第一高级中学高中数学 §2.2.2 对数函数及其性质(第三课时)教案 新人教A版必修1

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
对数函数(第三课时)一.教学目标:1.知识与技能(1)知识与技能(2)了解反函数的概念,加深对函数思想的理解.2.过程与方法学生通过观察和类比函数图象,体会两种函数的单调性差异.3.情感、态度、价值观(1)体会指数函数与指数;(2)进一步领悟数形结合的思想.二.重点、难点:重点:指数函数与对数函数内在联系难点:反函数概念的理解三.学法与教具:学法:通过图象,理解对数函数与指数函数的关系.教具:多媒体四.教学过程:1.复习(1)函数的概念(2)用列表描点法在同一个直角坐标点中画出的函数图象.`2.讲授新知…-3-2-10123……1248……-3-2-10123……1248…图象如下:y0x3 探究:在指数函数中,为自变量,为因变量,如果把当成自变量,当成因变量,那么是的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.引导学生通过观察、类比、思考与交流,得出结论.在指数函数中,是自变量,是的函数(),而且其在R上是单调递增函数.过轴正半轴上任意一点作轴的平行线,与的图象有且只有一个交点.由指数式与对数式关系,,即对于每一个,在关系式的作用之下,都有唯一的确定的值和它对应,所以,可以把作为自变量,作为的函数,我们说.从我们的列表中知道,是同一个函数图象.3.引出反函数的概念(只让学生理解,加宽学生视野)当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数为反函数.由反函数的概念可知,同底的指数函数和对数函数互为反函数.如的反函数,但习惯上,通常以表示自变量,表示函数,对调中的,这样是指数函数的反函数.以后,我们所说的反函数是对调后的函数,如的反函数是.同理,>1)的反函数是>0且.课堂练习:求下列函数的反函数(1)(2)归纳小结:1.今天我们主要学习了什么?2.你怎样理解反函数?课后思考:(供学有余力的学生练习)我们知道>0与对数函数>0且互为反函数,探索下列问题.1.在同一平面直角坐标系中,画出的图象,你能发现这两个函数有什么样的对称性吗?2.取图象上的几个点,写出它们关于直线的对称点坐标,并判断它们3 是否在的图象上吗?为什么?3.由上述探究你能得出什么结论,此结论对于>0成立吗?3