• 305.50 KB
  • 2023-12-11 19:30:03 发布

吉林省东北师范大学附属中学2014-2015学年高中数学 2.3.3双曲线的简单几何性质教案 新人教A版选修2-1

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
吉林省东北师范大学附属中学2014-2015学年高中数学2.3.3双曲线的简单几何性质教案新人教A版选修2-1◆◆知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义.◆过程与方法目标(1)复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过的思考问题,探究双曲线的扁平程度量椭圆的离心率.〖板书〗§2.2.2双曲线的简单几何性质.(2)新课讲授过程(i)通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii)双曲线的简单几何性质①范围:由双曲线的标准方程得,,进一步得:,或.这说明双曲线在不等式,或所表示的区域;②对称性:由以代,以代和代,且以代这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以轴和轴为对称轴,原点为对称中心;③5 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴;④渐近线:直线叫做双曲线的渐近线;⑤离心率:双曲线的焦距与实轴长的比叫做双曲线的离心率().(iii)例题讲解与引申、扩展例3求双曲线的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在轴上的渐近线是.扩展:求与双曲线共渐近线,且经过点的双曲线的标准方及离心率.解法剖析:双曲线的渐近线方程为.①焦点在轴上时,设所求的双曲线为,∵点在双曲线上,∴,无解;②焦点在轴上时,设所求的双曲线为,∵点在双曲线上,∴,因此,所求双曲线的标准方程为,离心率.这个要进行分类讨论,但只有一种情形有解,事实上,可直接设所求的双曲线的方程为5 .例4双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为,上口半径为,下口半径为,高为.试选择适当的坐标系,求出双曲线的方程(各长度量精确到).解法剖析:建立适当的直角坐标系,设双曲线的标准方程为,算出的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在处堆放着刚购买的草皮,现要把这些草皮沿着道路或送到呈矩形的足球场中去铺垫,已知,,,.能否在足球场上画一条“等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设为“等距离”线上任意一点,则,即(定值),∴“等距离”线是以、为焦点的双曲线的左支上的一部分,容易“等距离”线方程为.理由略.例5如图,设与定点的距离和它到直线:5 的距离的比是常数,求点的轨迹方程.分析:若设点,则,到直线:的距离,则容易得点的轨迹方程.引申:用《几何画板》探究点的轨迹:双曲线若点与定点的距离和它到定直线:的距离比是常数,则点的轨迹方程是双曲线.其中定点是焦点,定直线:相应于的准线;另一焦点,相应于的准线:.◆情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.5 5