- 209.50 KB
- 2023-12-10 17:10:02 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
课题: 第09课时不等式的证明方法之二:综合法与分析法目的要求:重点难点:教学过程:一、引入:综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法。由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点。所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证的不等式。而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中。前一种是“由因及果”,后一种是“执果索因”。打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”。以前得到的结论,可以作为证明的根据。特别的,是常常要用到的一个重要不等式。二、典型例题:例1、都是正数。求证:证明:由重要不等式可得本例的证明是综合法。例2、设,求证证法一分析法要证成立.只需证成立,又因,只需证成立,又需证成立,即需证成立.而显然成立.由此命题得证。证法二综合法
两边同时加上得两边同时除以正数得(1)。读一读:如果用或表示命题P可以推出命题Q(命题Q可以由命题P推出),那么采用分析法的证法一就是(1)而采用综合法的证法二就是如果命题P可以推出命题Q,命题Q也可以推出命题P,即同时有,那么我们就说命题P与命题Q等价,并记为在例2中,由于都是正数,实际上例4、证明:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为,则周长为的圆的半径为,截面积为;周长为的正方形为,截面积为。所以本题只需证明。
证明:设截面的周长为,则截面是圆的水管的截面面积为,截面是正方形的水管的截面面积为。只需证明:。为了证明上式成立,只需证明。两边同乘以正数,得:。因此,只需证明。上式显然成立,所以。这就证明了:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。例5、证明:。证法一因为(2)(3)(4)所以三式相加得(5)两边同时除以2即得(1)。证法二因为所以(1)成立。例6、证明:(1)证明(1)(2)(3)(4)(5)(5)显然成立。因此(1)成立。例7、已知都是正数,求证并指出等号在什么时候成立?
分析:本题可以考虑利用因式分解公式着手。证明:==由于都是正数,所以而,可知即(等号在时成立)探究:如果将不等式中的分别用来代替,并在两边同除以3,会得到怎样的不等式?并利用得到的结果证明不等式:,其中是互不相等的正数,且.三、小结:解不等式时,在不等式的两边分别作恒等变形,在不等式的两边同时加上(或减去)一个数或代数式,移项,在不等式的两边同时乘以(或除以)一个正数或一个正的代数式,得到的不等式都和原来的不等式等价。这些方法,也是利用综合法和分析法证明不等式时常常用到的技巧。四、练习:1、已知求证:
2、已知求证五、作业:
您可能关注的文档
- 高二数学(人教版)选修4-5教案:第09课时不等式的证明方法之——综合法与分析法
- 高二数学(人教版)选修4-5教案:第17课时数学归纳法与不等式
- 高二数学(人教版)选修4-5教案:第04课时指数不等式的解法
- 高二数学(人教版)选修4-4教案:第3节 极坐标系
- 高二数学(人教版)选修4-4教案:第8节 常用曲线的极坐标方程(3)
- 高二数学精品教案:2.4 1 正态分布(选修2-3)
- 高二数学(人教版)选修4-5教案:第12课时几个著名的不等式之——柯西不等式
- 高二数学(人教版)选修4-5教案:第02课时含有绝对值的不等式的解法
- 高二数学(人教版)选修4-4教案:第1节 平面直角坐标系
- 高二数学精品教案:2.1 3 离散型随机变量与分布列分布函数及其基本性质常见的几种离散型分布(选修2-3)