- 194.00 KB
- 2023-12-10 16:40:02 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
第3节:极坐标系教学目的:知识目标:理解极坐标的概念能力目标:能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.教学重点:理解极坐标的意义教学难点:能够在极坐标系中用极坐标确定点位置授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:情境1:军舰巡逻在海面上,发现前方有一群水雷,如何确定它们的位置以便将它们引爆?情境2:如图为某校园的平面示意图,假设某同学在教学楼处。(1)他向东偏60°方向走120M后到达什么位置?该位置惟一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述?问题1:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢?问题2:如何刻画这些点的位置?这一思考,能让学生结合自己熟悉的背景,体会在某些情况下用距离与角度来刻画点的位置的方便性,为引入极坐标提供思维基础.二、讲解新课:从情镜2中探索出:在生活中人们经常用方向和距离来表示一点的位置。这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。1、极坐标系的建立:在平面上取一个定点O,自点O引一条射线OX,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。(其中O称为极点,射线OX称为极轴。)2、极坐标系内一点的极坐标的规定对于平面上任意一点M,用r表示线段OM的长度,用q表示从OX到OM的角度,r叫做点M的极径,q叫做点M的极角,有序数对(r,q)就叫做M的极坐标。特别强调:由极径的意义可知r≥0;当极角q的取值范围是[0,2)时,平面上的点(除去极点)就与极坐标(r,q)建立一一对应的关系.们约定,极点的极坐标是极径r=0,极角是任意角.3、负极径的规定在极坐标系中,极径r允许取负值,极角q也可以去任意的正角或负角当r<0时,点M(r,q)位于极角终边的反向延长线上,且OM=。
M(r,q)也可以表示为4、数学应用例1写出下图中各点的极坐标A(4,0)B(2)C()D()E()F()G()①平面上一点的极坐标是否唯一?②若不唯一,那有多少种表示方法?③坐标不唯一是由谁引起的?④不同的极坐标是否可以写出统一的表达式规定:极点的极坐标是=0,可以取任意角。变式训练在极坐标系里描出下列各点A(3,0)B(6,2)C(3,)D(5,)E(3,)F(4,)G(6,点的极坐标的表达式的研究例2在极坐标系中,(1)已知两点P(5,),Q,求线段PQ的长度;(2)已知M的极坐标为(r,q)且q=,r,说明满足上述条件的点M的位置。变式训练1、若的的三个顶点为2、若A、B两点的极坐标为求AB的长以及的面积。(O为极点)例3已知Q(r,q),分别按下列条件求出点P的极坐标。(1)P是点Q关于极点O的对称点;(2)P是点Q关于直线的对称点;(3)P是点Q关于极轴的对称点。
变式训练1.在极坐标系中,与点关于极点对称的点的一个坐标是()2在极坐标系中,如果等边的两个顶点是求第三个顶点C的坐标。三、小结:本节课学习了以下内容:1、极坐标系的建立:2、极坐标系内一点的极坐标的规定;3、负极径的规定。四、课后作业:
您可能关注的文档
- 高二数学(人教版)选修4-4教案:第3节 极坐标系
- 高二数学(人教版)选修4-4教案:第8节 常用曲线的极坐标方程(3)
- 高二数学精品教案:2.4 1 正态分布(选修2-3)
- 高二数学(人教版)选修4-5教案:第12课时几个著名的不等式之——柯西不等式
- 高二数学(人教版)选修4-5教案:第02课时含有绝对值的不等式的解法
- 高二数学(人教版)选修4-4教案:第1节 平面直角坐标系
- 高二数学精品教案:2.1 3 离散型随机变量与分布列分布函数及其基本性质常见的几种离散型分布(选修2-3)
- 高二数学(人教版)选修4-5教案:第07课时含有参数不等式的解法
- 高二数学(人教版)选修4-4教案:第6节 常用曲线的极坐标方程(1)
- 高二数学精品教案:2.3 2 离散型随机变量的方差(选修2-3)