• 1.26 MB
  • 2023-11-20 13:50:01 发布

5.3.2 命题、定理、证明-人教版数学七年级下册教学资源

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
5.3.2 命题、定理、证明 【学习目标】 1、知道什么是命题、真命题、假命题、定理; 2、会根据“题设”和“结论”把命题改果……,那么……”的形式,并能正确判定命题的真假。 【学习重点与难点】 1.重点:确定命题的“题设”与“结论”,并会改写成“如果……, 那么……”的形式 2.难点:判断命题的真假 【课前检测】 1.如图,(1)如果∠1=________,那么DE∥ AC; (2) 如果∠1=________,那么EF∥ BC; (3)如果∠FED+ ∠________=180,那么AC∥ED; (4) 如果∠2+ ∠________=180,那么AB∥DF. 2.如图,∠1=120,∠1=120,∠3=110。求∠4 【课堂活动】 活动一、认识命题的构成 大家一起读一读下列语句: (1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边同加同一个数,结果仍是等式。 像这样对一件事情作出判断的语句,叫做命题。你能再举出一些命题的例子吗? 比如: 命题由“题设”和“结论”两部分组成,“题设”指已知事项,“结论”指由已知事项推导出的事项。命题通常可以写成“如果……,那么……”的形式,这里的“如果”后面接的是“题设”(即已知条件),“那么”后面接的是“结论” 如(1)中的“两条直线都与第三条直线平行”是已知条件,是“题设”,而“这两条直线也互相平行”是“结论”。 请同学们将(2)(4)的命题改写成“如果……,那么……”的形式 (2) (4) 而有些命题的“题设”和“结论”不是很明显,要经过分析才能找出“题设”和“结论”,如“对顶角相等”,这里的前提是“对顶角”,结论是“相等”,因此我们可以改成 练习: 1。指出下列命题的“题设”与“结论” (1)不相等的两个角不是对顶角 题设: 结论: (2)互余的两个角不一定相等 题设: 结论: (3)若a>0,b>0,则ab>0 题设: 结论: (4)若a∥b,b∥c,则a∥c 题设: 结论: 2。将下列命题改写成“如果……,那么……”的形式 (1)两直线平行,同位角相等: (2)内错角相等,两直线平行: (3)正数的相反数是负数: (4)相等的两个角是对顶角: 活动二、认识真假命题 从上面的命题来看,有些命题是正确的,如上面练习中的 ,而有些是错误的,如练习中的 。正确的命题叫做真命题,即:如果题设成立,那么结论也一定成立;错误的命题叫做假命题,即使题设成立,结论也不能保证一定成立。要确定一个命题是真命题,必须通过推理论证;要确定一个命题是假命题,只要举一个反例就可以了。经过推理论证得到的真命题叫做定理,可以在其他的推理中作为依据。 练习:判断下列命题的真假,是假命题的,请举出一个反例。 (1)邻补角是互补的角; (2)互补的角是邻补角; (3)两个锐角的和是锐角; (4)不等式的两边同乘以一个负数,不等号的方向不变。 【小结】注意:命题是一个完整的句子,不完整的句子不是命题。如:“两条直线分别在”不是完整的句子,所以不是命题。命题必须作出判断。 【作业】 书本P22页 练习1、2 书本P24页 第11题 预习书p27-28页 画出与平移有关的概念