• 1017.00 KB
  • 2023-11-18 19:50:01 发布

13.3.1 第1课时 等腰三角形的性质2-人教版数学八年级上册教学资源

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
13.3.1 等腰三角形 第1课时 等腰三角形的性质 教学目标 (一)教学知识点 1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用. (二)能力训练要求 1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 教学重点 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用. 教学难点 等腰三角形三线合一的性质的理解及其应用. 教学过程 提出问题,创设情境 在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? 导入新课 同学们通过自己的思考来做一个等腰三角形. 作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形. 提问: 1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系? 3.顶角的平分线所在的直线是等腰三角形的对称轴吗? 4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢? 等腰三角形的性质: 1.等腰三角形的两个底角相等(简写成“等边对等角”). 2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”). [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD, 求:△ABC各角的度数. 分析:根据等边对等角的性质,我们可以得到 ∠A=∠ABD,∠ABC=∠C=∠BDC, 再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A. 再由三角形内角和为180,就可求出△ABC的三个内角. [例]因为AB=AC,BD=BC=AD, 所以∠ABC=∠C=∠BDC. ∠A=∠ABD(等边对等角). 设∠A=x,则 ∠BDC=∠A+∠ABD=2x, 从而∠ABC=∠C=∠BDC=2x. 于是在△ABC中,有 ∠A+∠ABC+∠C=x+2x+2x=180, 解得x=36. 在△ABC中,∠A=35,∠ABC=∠C=72. [师]下面我们通过练习来巩固这节课所学的知识. 随堂练习 练习 1. 如下图,在下列等腰三角形中,分别求出它们的底角的度数. 答案:(1)72 (2)30 2. 如右图,△ABC是等腰直角三角形(AB=AC,∠BAC=90),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段? 答案:∠B=∠C=∠BAD=∠DAC=45;AB=AC,BD=DC=AD. 3. 如右图,在△ABC中,AB=AD=DC,∠BAD=26,求∠B和∠C的度数. 答:∠B=77,∠C=38.5. 课时小结 这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高. 我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. 活动与探究 如右图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E. 求证:AE=CE. 过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质. 结果: 证明:延长CD交AB的延长线于P,如右图,在△ADP和△ADC中 ∴△ADP≌△ADC. ∴∠P=∠ACD. 又∵DE∥AP, ∴∠4=∠P. ∴∠4=∠ACD. ∴DE=EC. 同理可证:AE=DE. ∴AE=CE. 板书设计 等腰三角形 一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一