• 563.50 KB
  • 2023-11-18 08:10:02 发布

1.2.4 第2课时 有理数大小的比较2-人教版数学七年级上册教学资源

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
1.2.4 绝对值 第2课时 有理数大小的比较 【教学目标】 (一)知识技能 1.使学生进一步巩固绝对值的概念,能说出有理数大小的比较法则 2. 能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。 3. 能正确运用符号“<”“>”“∵”“∴”写出表示推理过程中简单的因果关系 (二)过程方法 经历由实际问题总结归纳出应用绝对值概念比较有理数大小,特别是比较两个负数的大小的过程,渗透数形结合思想。 (三)情感态度 通过学生自己动手操作,观察、思考,使学生亲身体验探索的乐趣,培养学生合作交流能力和观察、归纳、用数学语言表达数学规律的能力。同时培养学生逻辑思维能力和推理论证能力。 教学重点 运用法则借助数轴比较两个有理数的大小。 教学难点 利用绝对值概念比较两个负分数的大小。 【复习引入】 1.复习绝对值的几何意义和代数意义: 一个数a的绝对值就是数轴上表示数a的点与原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。 2.(多媒体显示)某一天我们5个城市的最低气温分别是 画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么? -20   -10   0  5  10 (                    ) 3.温度的高低与相应的数在数轴上的位置有什么关系? (通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?)由小组讨论后,教师归纳得出结论: 【教学过程】 1.在数轴上表示的两个数,右边的数总比左边的数大。 正数都大于零,负数都小于零,正数大于负数。 例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用“<”号连接。(师生共同完成) 分析:本题意有几层含义?应分几步? 要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴;②描点;③有序排列;④不等号连接。 2.发现、总结: 做一做 (1)在数轴上表示下列各对数,并比较它们的大小 ①2和7   ②-1.5和-1   ③-和-  ④-1.412和-1.411 (2)求出图中各对数的绝对值,并比较它们的大小。 (3)由①、②从中你发现了什么? 要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。 3. 两个负数比较大小时的一般步骤: 例如,比较两个负数和的大小: ① 先分别求出它们的绝对值:==,== ② 比较绝对值的大小: ∵ ∴ ③ 比较负数大小: 4.归纳: 我们可以得到有理数大小比较的一般法则: (1) 负数小于0,0小于正数,负数小于正数; (2) 两个正数,应用已有的方法比较; (3) 两个负数,绝对值大的反而小. 5.例题: 例2:比较下列各对数的大小: ①-1与-0.01; ②与0; ③-0.3与; ④与。 解:(1)这是两个负数比较大小, ∵|―1|=1, |―0.01|=0.01, 且 1>0.01, ∴―1< ―0.01。 (2) 化简:―|―2|=―2,因为负数小于0,所以―|―2| < 0。 (3) 这是两个负数比较大小, ∵|―0.3|=0.3,,且 0.3 < , ∴。 (4) 分别化简两数,得: ∵正数大于负数, ∴ 说明:①要求学生严格按此格式书写,训练学生逻辑推理能力; ②注意符号“∵”、“∴”的写法、读法和用法; ③对于两个负数的大小比较可以不必再借助于数轴而直接进行; ④异分母分数比较大小时要通分将分母化为相同。 例3:用“>”连接下列个数: 2.6,―4.5,,0,―2 分析:多个有理数比较大小时,应根据“正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数”进行分组比较,即只需正数和正数比,负数和负数比。 提醒学生,用“>”连接两个以上数时,大数在前,小数在后,不能出现5>0<4的式子. 解答:2.6>>0>―2>―4.5。 6.想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点? 由学生讨论后,得出比较有理数的大小共有两种方法:一种是法则,另一种是利用数轴。 当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。 【课堂作业】 1.(1)有没有最大的有理数,有没有最小的有理数,为什么? (2)有没有绝对值最小的有理数?若有,请把它写出来? (3)大于-1.5且小于4.2的整数有_____个,它们分别是____。 2.比较大小(用“>”,“<”或“=”填空) (1)0.1 -10, (2)0 -5, (3)|| |-|, (4)|-3| -3, (5)-|-3| -(+3), (6)- -|-| (7)- -0.273 3.比较下列各对数的大小 (1)-5和-6 (2)-与-3.14 (3)|-|与0 (4)-[-(-)]与-|-| (5)与 (6)和 4.将有理数按从小到大的顺序排列,并用“<” 号连接起来。 参考答案: 1.(1) 没有最大的有理数,没有最小的有理数,因为数轴是一条直线,向两端无限延伸。 (2)有绝对值最小的有理数,是0 (3)-1,0,1,2,3,4. 2.(1)> (2)> (3)< (4)> (5)= (6)> (7)> 3. 解:(1)∵|-5|=5,|-6|=6,又5<6 ∴-5<-6。 (2)∵|-|=≈3.143,|-3.14|=3.14,又3.143>3.14, ∴-<-3.14。 (3)∵|-|= ∴|-|>0 (4)∵-[-(-)]=- -|-|=- 又|-|== |-|= < ∴-[-(-)]>-|-| (5),,而, (6)而 4.解: 【教学反思】 在传授知识的同时,要重视学科基本思想方法的教学。为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授。 本课中,我们有意识地突出“分类讨论”、“∵,∴”这些数学思想方法,以期使学生对此有一个初步的认识与了解。