• 138.00 KB
  • 2023-11-18 07:30:02 发布

1.2.3 相反数1-人教版数学七年级上册教学资源

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
1.2.3 相反数 1.借助数轴理解相反数的概念,并能求给定数的相反数;(重点) 2.了解一对相反数在数轴上的位置关系;(重点) 3.掌握双重符号的化简;(难点) 4.通过从数和形两个方面理解相反数,初步体会数形结合的思想方法.                  一、情境导入 1.让两个学生在讲台前背靠背站好(分左右),规定向右为正(正号可以省略),向右走2步,向左走2步各记作什么? 2.规定两个同学未走时的点为原点,用上一节课学的数轴将上述问题情境中的2和-2表示出来. 3.从数轴上观察,这两位同学各走的距离都是2步,但方向相反,可用2和-2表示,这两个数具有什么特点? 二、合作探究 探究点一:相反数的意义 【类型一】 相反数的代数意义 写出下列各数的相反数:16,-3,0,-,m,-n. 解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0. 解:-16,3,0,,-m,n. 方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0. 【类型二】 相反数的几何意义 (1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________. (2)在数轴上,若点A和点B分别表示互为相反数的两个数,点A在点B的左侧,并且这两个数的距离是12.8,则A=______,B=______. 解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,∴距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)∵点A和点B分别表示互为相反数的两个数,∴原点到点A与点B的距离相等,∵A、B两点间的距离是12.8,∴原点到点A和点B的距离都等于6.4.∵点A在点B的左侧,∴这两点所表示的数分别是-6.4,6.4. 方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧. 【类型三】 相反数与数轴相结合的问题 如图,图中数轴(缺原点)的单位长度为1,点A、B表示的两数互为相反数,则点C所表示的数为(  ) A.2 B.-4 C.-1 D.0 解析:由题意如图, 数轴向右为正方向,数轴(缺原点)的单位长度为1,∴点C所表示的数为-1,故应选C. 方法总结:先在数轴上找到原点,从而确定点C所表示的数,同时牢记互为相反数的两个点到原点的距离相等. 探究点二:化简多重符号 化简下列各数. (1)-(-8)=________; (2)-(+15)=________; (3)-[-(+6)]=________; (4)+(+)=________. 解:(1)-(-8)=8; (2)-(+15)=-15; (3)-[-(+6)]=-(-6)=6; (4)+(+)=. 方法总结:化简多重符号时,只需数一下数字前面有多少个负号,若有偶数个,则结果为正;若有奇数个,则结果为负. 三、板书设计 1.相反数 (1)只有符号不同的两个数. (2)a的相反数是-a,0的相反数是0. (3)互为相反数的两个数和为0. 2.多重符号的化简 (1)偶数个“-”号,结果为正数. (2)奇数个“-”号,结果为负数. 从具体的场景出发,利用数轴引导学生感受相反数的意义.通过教师的层层设问,充分展示学生的思维过程,让学生学会“理性”思考,从而归纳出互为相反数的意义.让学生意识到数学“源于生活,又高于生活”;在认识相反数的意义的过程中,通过数形结合,将数学文化灵活应用于教学中,旨在让学生领会归纳相反数意义的多样性、概括性.