• 1.08 MB
  • 2023-11-21 15:30:07 发布

第十六章复习-人教版数学八年级下册教学资源

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
《二次根式》复习 一、学习目标 1、了解二次根式的定义,掌握二次根式有意义的条件和性质。 2、熟练进行二次根式的乘除法运算。 3、理解同类二次根式的定义,熟练进行二次根式的加减法运算。 4、了解最简二次根式的定义,能运用相关性质进行化简二次根式。 二、学习重点、难点 重点:二次根式的计算和化简。 难点:二次根式的混合运算,正确依据相关性质化简二次根式。 三、复习过程 (一)自主复习 1.若a>0,a的平方根可表示为___________ a的算术平方根可表示________ 2.当a______时,有意义, 当a______时,没有意义。 3. 4. 5. (二)合作交流,展示反馈 1、式子成立的条件是什么? 2、计算: (1) (2) 3.(1) (2) (三)精讲点拨 在二次根式的计算、化简及求值等问题中,常运用以下几个式子: (1) (2) (3) (4) (5) (四)达标测试: A组 1、选择题: (1)化简的结果是( ) A 5 B -5 C 士5 D 25 (2)代数式中,x的取值范围是( ) A B C D (3)下列各运算,正确的是( ) A、 B、 C、 D、 (4)如果是二次根式,化为最简二次根式是( ) A、 B、 C、 D、以上都不对 (5)化简的结果是( ) 2、计算. (1) (2) (3) (4) 3、已知求的值 B组 1、选择: (1),则( ) A a,b互为相反数 B a,b互为倒数 C D a=b (2)在下列各式中,化简正确的是( ) A、 B、C、 D、 (3)把中根号外的移人根号内得( ) 2、计算: (1) (2) (3) 3.同学们,我们以前学过完全平方公式,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=()2,5=()2,下面我们观察: 反之, ∴ ∴ =-1 仿上例,求:(1); (2)你会算吗? (3)若,则m、n与a、b的关系是什么?并说明理由.