• 1008.50 KB
  • 2023-11-20 18:00:02 发布

5.2.2 第2课时 平行线判定方法的综合运用-人教版数学七年级下册教学资源

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
第2课时 平行线判定方法的综合运用 【学习目标】 1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。 2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。 【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。 【学具准备】三角板 【自主学习】 1、预习疑难: 。 2、填空:经过直线外一点,_____ ___与这条直线平行. 【合作探究】(一)平行线判定方法1: 1、观察思考:过点P画直线CD∥AB的过程,三角尺起了什么作用? 图中,∠1和∠2什么关系? 2、判定方法1: 应用格式: 。∵∠1=∠2(已知) 简单说成: 。 ∴AB∥CD(同位角相等,两直线平行) 应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3: 1、 思考:教材14页(试着写出推理过程) 判定方法2: 应用格式: 。∵∠2=∠3(已知) 简单说成: 。 ∴a∥b(内错角相等,两直线平行) 2、将上题中条件改变为∠2+∠4=180,能得到a∥b吗?(试写出推理过程) 判定方法3: 应用格式: 。 ∵∠2+∠4=180(已知) 简单说成: 。∴a∥b(同旁内角互补,两直线平行) (三)数学思想:教材15页探究。 【反馈提高】 (一)例 教材15页 (二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件 (1) (2) 方法1:若a∥b,b∥c,则a∥c。即两条直线都与第三条直线平行,这两条直线也互相平行。 方法2:如图1,若∠1=∠3,则a∥c。即 。 方法3:如图1,若 。 方法4:如图1,若 。 方法5:如图2,若a⊥b,a⊥c,则b∥c。即在同一平面内,垂直于同一条直线的两条直线互相平行。 【达标测评】 (一)选择题: 1.如图1所示,下列条件中,能判断AB∥CD的是( )毛 A.∠BAD=∠BCD B.∠1=∠2; C.∠3=∠4 D.∠BAC=∠ACD (1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( ) A.AD∥BC B.EF∥BC C.AB∥DC D.AD∥EF 3.下列说法错误的是( ) A.同位角不一定相等 B.内错角都相等 C.同旁内角可能相等 D.同旁内角互补,两直线平行 4.(2000.江苏)如图5,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠-5;②∠1=∠7;③∠2+∠3=180;④∠4=∠7.其中能说明 a∥b的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题: 1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____; 如果∠5=∠3,或___ ____,那么________, 理由是____ __________; 如果∠2+ ∠5= ______ 或者______,那么a∥b,理由是___ _____. 2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD. 3.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______. 4.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C. (1)由∠CBE=∠A可以判断______∥______,根据是_________. (2)由∠CBE=∠C可以判断______∥______,根据是_________. 六、【拓展延伸】 1、已知直线a、b被直线c所截,且∠1+∠2=180, 试判断直线a、b的位置关系,并说明理由. 2、如图,已知,,试问EF是否平行GH,并说明理由。 3.如图所示,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB. 4、 如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=-30,试说明AB∥CD. 5、提高训练: 如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180,则a与c平行吗?为-什么?