• 1.12 MB
  • 2023-11-18 14:00:02 发布

15.1.2 分式的基本性质1-人教版数学八年级上册教学资源

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
15.1.2 分式的基本性质                     1.通过类比分数的基本性质,说出分式的基本性质,并能用字母表示.(重点) 2.理解并掌握分式的基本性质和符号法则.(难点) 3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的基本性质,对分式进行约分和通分.(难点) 一、情境导入 中国古代的数学论著中就有对“约分”的记载,如《九章算术》中就曾记载“约分术”,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的基本性质. 二、合作探究 探究点一:分式的基本性质 【类型一】 利用分式的基本性质对分式进行变形 下列式子从左到右的变形一定正确的是(  ) A.= B.= C.= D.= 解析:A中在分式的分子与分母上同时加上3不符合分式的基本性质,故A错误;B中当c=0时不成立,故B错误;C中分式的分子与分母同时除以3,分式的值不变,故C正确;D中分式的分子与分母分别乘方,不符合分式的基本性质,故D错误;故选C. 方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变. 【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数 不改变分式的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为(  ) A. B. C. D. 解析:利用分式的基本性质,把的分子、分母都乘以10得.故选C. 方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘以某一个数即可. 【类型三】 分式的符号法则 不改变分式的值,使下列分式的分子和分母都不含“-”号. (1);(2);(3). 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变. 解:(1)原式=-;(2)原式=-;(3)原式=-. 方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号. 探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式 下列分式是最简分式的是(  ) A. B. C. D. 解析:A中该分式的分子、分母含有公因式a,则它不是最简分式.错误;B中该分式的分子、分母含有公因数3,则它不是最简分式.错误;C中分子为(x+1)(x-1),所以该分式的分子、分母含有公因式(x+1),则它不是最简分式.错误;D中该分式符合最简分式的定义.正确.故选D. 方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式. 【类型二】 分式的约分 约分:(1);(2). 解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去. 解:(1)==-; (2)==. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式. 【类型三】 分式的通分 通分: (1),,; (2),,. 解析:确定最简公分母再通分. 解:(1)最简公分母为30a2b2c2,=,=-,=; (2)最简公分母为a(a+2)(a-2),=,=,=. 方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式. 三、板书设计 分式的基本性质 1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变. 2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个的符号或三个全变号,则分式的值变成原分式值的相反数. 本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.