- 114.50 KB
- 2023-12-14 23:20:02 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
甘肃省金昌市第一中学2014年高中数学1.2.1充分条件与必要条件教案新人教A版选修1-11.知识与技能:正确理解充分不必要条件、必要不充分条件的概念;会判断命题的充分条件、必要条件.2.过程与方法:通过对充分条件、必要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力.3.情感、态度与价值观:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.(二)教学重点与难点重点:充分条件、必要条件的概念.(解决办法:对这三个概念分别先从实际问题引起概念,再详细讲述概念,最后再应用概念进行论证.)难点:判断命题的充分条件、必要条件。关键:分清命题的条件和结论,看是条件能推出结论还是结论能推出条件。教具准备:与教材内容相关的资料。教学设想:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.(三)教学过程学生探究过程:1.练习与思考写出下列两个命题的条件和结论,并判断是真命题还是假命题?(1)若x>a2+b2,则x>2ab,(2)若ab=0,则a=0.学生容易得出结论;命题(1)为真命题,命题(2)为假命题.置疑:对于命题“若p,则q”,有时是真命题,有时是假命题.如何判断其真假的?答:看p能不能推出q,如果p能推出q,则原命题是真命题,否则就是假命题.2.给出定义命题“若p,则q”为真命题,是指由p经过推理能推出q,也就是说,如果p成立,那么q一定成立.换句话说,只要有条件p就能充分地保证结论q的成立,这时我们称条件p是q成立的充分条件.一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作:pÞq.定义:如果命题“若p,则q”为真命题,即pÞq,那么我们就说p是q的充分条件;q是p必要条件.上面的命题(1)为真命题,即x>a2+b2 Þx>2ab,所以“x>a2+b2 ”是“x>2ab”的充分条件,“x>2ab”是“x>a2+b2” "的必要条件.3.例题分析:例1:下列“若p,则q”形式的命题中,那些命题中的p是q的充分条件?(1)若x=1,则x2-4x+3=0;(2)若f(x)=x,则f(x)为增函数;4
(3)若x为无理数,则x2为无理数.分析:要判断p是否是q的充分条件,就要看p能否推出q.解略.例2:下列“若p,则q”形式的命题中,那些命题中的q是p的必要条件?(1)若x=y,则x2=y2;(2)若两个三角形全等,则这两个三角形的面积相等;(3)(3)若a>b,则ac>bc.分析:要判断q是否是p的必要条件,就要看p能否推出q.解略.4、巩固巩固:P12练习第1、2、3、4题5.教学反思:充分、必要的定义.在“若p,则q”中,若pÞq,则p为q的充分条件,q为p的必要条件.6.作业P14:习题1.2A组第1(1)(2),2(1)(2)题注:(1)条件是相互的;(2)p是q的什么条件,有四种回答方式:①p是q的充分而不必要条件;②p是q的必要而不充分条件;③p是q的充要条件;④p是q的既不充分也不必要条件.1.2.2充要条件(一)教学目标1.知识与技能目标:(1)正确理解充要条件的定义,了解充分而不必要条件,必要而不充分条件,既不充分也不必要条件的定义.(2)正确判断充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.(3)通过学习,使学生明白对条件的判定应该归结为判断命题的真假,.2.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.3.情感、态度与价值观:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.(二)教学重点与难点重点:1、正确区分充要条件;2、正确运用“条件”的定义解题难点:正确区分充要条件.教具准备:与教材内容相关的资料。教学设想:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.(三)教学过程学生探究过程:1.思考、分析已知p:整数a是2的倍数;q:整数a是偶数.请判断:p是q的充分条件吗?p是q的必要条件吗?分析:要判断p是否是q的充分条件,就要看p能否推出q,要判断p是否是q的必要条件,就要看q能否推出p.易知:pÞq,故p是q的充分条件;4
又qÞp,故p是q的必要条件.此时,我们说,p是q的充分必要条件2.类比归纳一般地,如果既有pÞq,又有qÞp就记作pÛq.此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果pÛq,那么p与q互为充要条件.3.例题分析例1:下列各题中,哪些p是q的充要条件?(1)p:b=0,q:函数f(x)=ax2+bx+c是偶函数;(2)p:x>0,y>0,q:xy>0;(3)p:a>b,q:a+c>b+c;(4)p:x>5,,q:x>10(5)p:a>b,q:a2>b2分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p.解:命题(1)和(3)中,pÞq,且qÞp,即pÛq,故p是q的充要条件;命题(2)中,pÞq,但q ¹> p,故p不是q的充要条件;命题(4)中,p¹>q,但qÞp,故p不是q的充要条件;命题(5)中,p¹>q,且q¹>p,故p不是q的充要条件;4.类比定义一般地,若pÞq,但q¹>p,则称p是q的充分但不必要条件;若p¹>q,但qÞp,则称p是q的必要但不充分条件;若p¹>q,且q¹>p,则称p是q的既不充分也不必要条件.在讨论p是q的什么条件时,就是指以下四种之一:①若pÞq,但q¹>p,则p是q的充分但不必要条件;②若qÞp,但p¹>q,则p是q的必要但不充分条件;③若pÞq,且qÞp,则p是q的充要条件;④若p¹>q,且q¹>p,则p是q的既不充分也不必要条件.5.巩固练习:P14练习第1、2题说明:要求学生回答p是q的充分但不必要条件、或p是q的必要但不充分条件、或p是q的充要条件、或p是q的既不充分也不必要条件.6.例题分析例2:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.分析:设p:d=r,q:直线l与⊙O相切.要证p是q的充要条件,只需要分别证明充分性(pÞq)和必要性(qÞp)即可.证明过程略.4
7.教学反思:充要条件的判定方法如果“若p,则q”与“若p则q”都是真命题,那么p就是q的充要条件,否则不是.8.作业:P14:习题1.2A组第1(3)(2),2(3),3题课后反思:4
您可能关注的文档
- 甘肃省金昌市第一中学高中数学 1.2.1充分条件与必要条件教案 新人教A版选修1-1
- 甘肃省金昌市第一中学高中数学 1.1.1命题教案 新人教A版选修1-1
- 甘肃省金昌市第一中学2014高中数学 3.2.2 古典概型(第2课时)学案 新人教A版必修3
- 甘肃省金昌市第一中学2014高中数学 2.2.1 用样本估计总体(第1课时)学案 新人教A版必修3
- 甘肃省金昌市第一中学2014高中数学 2.3.2 变量间的相互关系(三)学案 新人教A版必修3
- 甘肃省金昌市第一中学2014高中数学 1.3.2 辗转相除法与更相减损术教案 新人教A版必修3
- 甘肃省金昌市第一中学高中数学 3.3.2函数的极值与导数教案 新人教A版选修1-1
- 甘肃省金昌市第一中学高中数学 2.2.8抛物线教案 新人教A版选修1-1
- 甘肃省金昌市第一中学2014高中数学 1.1.5 程序框图的画法教案 新人教A版必修3
- 甘肃省金昌市第一中学高中数学 3.1.1 变化率问题教案 新人教A版选修1-1
相关文档
最近下载
- • 甘肃省金昌市第一中学高中数学 1.2.1充分条件与必要条件教案 新人教A版选修1-1
- • 甘肃省金昌市第一中学高中数学 1.1.1命题教案 新人教A版选修1-1
- • 甘肃省金昌市第一中学2014高中数学 3.2.2 古典概型(第2课时)学案 新人教A版必修3
- • 甘肃省金昌市第一中学2014高中数学 2.2.1 用样本估计总体(第1课时)学案 新人教A版必修3
- • 甘肃省金昌市第一中学2014高中数学 2.3.2 变量间的相互关系(三)学案 新人教A版必修3
- • 甘肃省金昌市第一中学2014高中数学 1.3.2 辗转相除法与更相减损术教案 新人教A版必修3
- • 甘肃省金昌市第一中学高中数学 3.3.2函数的极值与导数教案 新人教A版选修1-1