• 187.50 KB
  • 2023-12-13 21:30:02 发布

福建省长乐第一中学2014高中数学 第二章《2. 2 .1 直接证明--综合法与分析法》教案 新人教A版选修2-2

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
§2.2.1直接证明--综合法与分析法1.教学目标:知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。2.教学重点:了解分析法和综合法的思考过程、特点3.教学难点:分析法和综合法的思考过程、特点4.教具准备:与教材内容相关的资料。5.教学设想:分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。6.教学过程:学生探究过程:1.综合法综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法叫做综合法用综合法证明不等式的逻辑关系是:综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法例1、在△ABC中,三个内角A,B,C的对边分别为,且A,B,C成等差数列,成等比数列,求证△ABC为等边三角形.分析:将A,B,C成等差数列,转化为符号语言就是2B=A+C;A,B,C为△ABC的内角,这是一个隐含条件,明确表示出来是A+B+C=;a,b,c成等比数列,转化为符号语言就是.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来.3 例2、已知求证本题可以尝试使用差值比较和商值比较两种方法进行。证明:1)差值比较法:注意到要证的不等式关于对称,不妨设,从而原不等式得证。2)商值比较法:设故原不等式得证。注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。讨论:若题设中去掉这一限制条件,要求证的结论如何变换?2.分析法证明数学命题时,还经常从要证的结论Q出发,反推回去,寻求保证Q成立的条件,明尸2成立,再去寻求尸2成立的充分条件尸3件、定理、定义、公理等)为止.乞,再去寻求尸1成立的充分条件尸2;为了证……直到找到一个明显成立的条件(已知条即使Q成立的充分条件尸1.为了证明尸1成立,分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法叫做分析法用分析法证明不等式的逻辑关系是:分析法的思维特点是:执果索因分析法的书写格式:要证明命题B为真,只需要证明命题为真,从而有……这只需要证明命题为真,从而又有…………这只需要证明命题A为真而已知A为真,故命题B必为真例3、求证证明:因为都是正数,所以为了证明只需证明展开得即因为成立,所以成立即证明了说明:①分析法是“执果索因”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……3 这只需要证明命题B2为真,从而又有……这只需要证明命题A为真而已知A为真,故B必真3