- 450.00 KB
- 2023-12-13 10:10:02 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
1.3三角函数的诱导公式一、教材分析(一)教材的地位与作用:1、本节课教学内容“诱导公式(二)、(三)、(四)”是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数基本关系式及诱导公式(一)等知识的延续和拓展,又是推导诱导公式(五)的理论依据。2、求三角函数值是三角函数中的重要问题之一。诱导公式是求三角函数值的基本方法。诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90°角的三角函数值问题。诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式。这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大的意义。(二)教学重点与难点:1、教学重点:诱导公式的推导及应用。2、教学难点:相关角边的几何对称关系及诱导公式结构特征的认识。二、教学目标1、知识与技能(1)识记诱导公式.(2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.2、过程与方法(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.3、情感态度和价值观(1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.三、教学设想三角函数的诱导公式(一)(一)创设问题情景,引导学生观察、联想,导入课题I重现已有相关知识,为学习新知识作铺垫。1、提问:试叙述三角函数定义2、提问:试写出诱导公式(一)3、提问:试说出诱导公式的结构特征10
4、板书诱导公式(一)及结构特征:诱导公式(一)sin(k·2π+)=sincos(k·2π+)=costg(k·2π+)=tg(k∈Z)结构特征:①终边相同的角的同一三角函数值相等②把求任意角的三角函数值问题转化为求0°~360°角的三角函数值问题。5、问题:试求下列三角函数的值(1)sin1110°(2)sin1290°学生:(1)sin1110°=sin(3×360°+30°)=sin30°=(2)sin1290°=sin(3×360°+210°)=sin210°(至此,大多数学生无法再运算,从已有知识导出新问题)6、引导学生观察演示(一),并思考下列问题一:х3002100演示(一)(1)210°能否用(180°+)的形式表达?(0°<<90°=(210°=180°+30°)(2)210°角的终边与30°的终边关系如何?(互为反向延长线或关于原点对称)(3)设210°、30°角的终边分别交单位圆于点p、p',则点p与p'的位置关系如何?(关于原点对称)(4)设点p(x,y),则点p’怎样表示?[p'(-x,-y)](5)sin210°与sin30°的值关系如何?7、师生共同分析:在求sin210°的过程中,我们把210°表示成(180°+30°)后,利用210°与30°角的终边及其与单位圆交点p与p′关于原点对称,借助三角函数定义,把180°~270°角的三角函数值转化为求0°~90°角的三角函数值。8、导入课题:对于任意角,sin与sin(180+)的关系如何呢?试说出你的猜想。(二)运用迁移规律,引导学生联想类比、归纳、推导公式10
(I)1、引导学生观察演示(二),并思考下列问题二:χ1800300χχχ180018001800设为任意角演示(二)(1)角与(180°+)的终边关系如何?(互为反向延长线或关于原点对称)(2)设与(180°+)的终边分别交单位圆于p,p′,则点p与p′具有什么关系?(关于原点对称)(3)设点p(x,y),那么点p′坐标怎样表示?[p′(-x,-y)](4)sin与sin(180°+)、cos与cos(180°+)关系如何?(5)tg与tg(180°+)(6)经过探索,你能把上述结论归纳成公式吗?其公式特征如何?2、教师针对学生思考中存在的问题,适时点拨、引导,师生共同归纳推导公式。(1)板书诱导公式(二)sin(180°+)=-sincos(180°+)=-costg(180°+)=tg(2)结构特征:①函数名不变,符号看象限(把看作锐角时)②把求(180°+)的三角函数值转化为求的三角函数值。3、基础训练题组一:求下列各三角函数值(可查表)①cos225°②tg-π③sinπ4、用相同的方法归纳出公式:sin(π-)=sincos(π-)=-costg(π-)=-tg5、引导学生观察演示(三),并思考下列问题三:300300演示(三)(1)30°与(-30°)角的终边关系如何?(关于x轴对称)10
(2)设30°与(-30°)的终边分别交单位圆于点p、p′,则点p与p′的关系如何?(3)设点p(x,y),则点p′的坐标怎样表示?[p′(x,-y)](4)sin(-30°)与sin30°的值关系如何?6、师生共同分析:在求sin(-30°)值的过程中,我们利用(-30°)与30°角的终边及其与单位圆交点p与p′关于原点对称的关系,借助三角函数定义求sin(-30°)的值。(Ⅱ)导入新问题:对于任意角sin与sin(-)的关系如何呢?试说出你的猜想?1、引导学生观察演示(四),并思考下列问题四:Oχχχχ设为任意角演示(四)(1)与(-)角的终边位置关系如何?(关于x轴对称)(2)设与(-)角的终边分别交单位圆于点p、p′,则点p与p′位置关系如何?(关于x轴对称)(3)设点p(x,y),那么点p′的坐标怎样表示?[p′(x,-y)](4)sin与sin(-)、cos与cos(-)关系如何?(5)tg与tg(-)(6)经过探索,你能把上述结论归纳成公式吗?其公式结构特征如何?2、学生分组讨论,尝试推导公式,教师巡视及时反馈、矫正、讲评3、板书诱导公式(三)sin(-)=-sincos(-)=costg(-)=-tg结构特征:①函数名不变,符号看象限(把看作锐角)②把求(-)的三角函数值转化为求的三角函数值4、基础训练题组二:求下列各三角函数值(可查表)①sin(-)②tg(-210°)③cos(-240°12′)(三)构建知识系统、掌握方法、强化能力I、课堂小结:(以填空形式让学生自己完成)10
1、诱导公式(一)、(二)、(三)sin(k·2π+)=sincos(k·2π+)=costg(k·2π+)=tg(k∈Z)sin(π+)=-sincos(π+)=-costg(π+)=tgsin(-)=-sincos(-)=costg(-)=-tg用相同的方法,归纳出公式Sin(π-α)=SinCos(π-α)=-cosαTen(π-α)=-tanα2、公式的结构特征:函数名不变,符号看象限(把看作锐角时)(Ⅱ)能力训练题组:(检测学生综合运用知识能力)1、已知sin(π+)=(为第四象限角),求cos(π+)+tg(-)的值。2、求下列各三角函数值(1)tg(-π)(2)sin(=-π)(3)cos(-5100151)(4)sin(-)(III)方法及步骤:查表求值00~3600间角的三角函数任意正角的三角函数任意负角的三角函数00~900间角的三角函数(IV)作业与课外思考题通过上述两题的探索,你能推导出新的公式吗?(四)、教法分析根据教学内容的结构特征和学生学习数学的心理规律,本节课彩了“问题、类比、发现、归纳”探究式思维训练教学方法。(1)利用已有知识导出新的问题,创设问题情境,引起学生学习兴趣,激发学生的求知欲,达到以旧拓新的目的。10
(2)由(1800+300)与300、(-300)与300终π-与)边对称关系的特殊例子,利多媒体动态演示。学生对“α为任意角”的认识更具完备性,通过联想、引导学生进行导,问题类比、方法迁移,发现任意角α与(1800+α)、-α终边的对称关系,进行寅,从特殊到一般的归纳推理训练,学生的归纳思维更具客观性、严密性和深刻性,培养学生的创新能力。(3)采用问题设疑,观察演示,步步深入,层层引发,引导联想、类比,进而发现、归纳的探究式思维训练教学方法。旨在让学生充分感受和理解知识的产生和发展过程。在教师适时的启发点拨下,学生在类比、归纳的过程中积极主动地去探索、发现数学规律(公式),培养学生的创新意识和创新精神。培养学生的思维能力。(4)通过能力训练题组和课外思考题,把诱导公式(一)、(二)、(三)、四的应用进一步拓广,把归纳推理和演绎推理有机结合起来,发展学生的思维能力。10
三角函数的诱导公式(二)一、复习:诱导公式(一)诱导公式(二)诱导公式(三)诱导公式(四)对于五组诱导公式的理解:①②这四组诱导公式可以概括为:总结为一句话:函数名不变,符号看象限练习1:P27面作业1、2、3、4。2:P25面的例2:化简二、新课讲授:1、诱导公式(五)2、诱导公式(六)总结为一句话:函数正变余,符号看象限例1.将下列三角函数转化为锐角三角函数:练习3:求下列函数值:例2.证明:(1)(2)例3.化简:解:小结:10
①三角函数的简化过程图:公式一或二或四任意负角的三角函数任意正角的三角函数00~3600间角的三角函数00~900间角的三角函数查表求值公式一或三②三角函数的简化过程口诀:负化正,正化小,化到锐角就行了.练习4:教材P28页7.三.课堂小结①熟记诱导公式五、六;②公式一至四记忆口诀:函数名不变,正负看象限;③运用诱导公式可以将任意角三角函数转化为锐角三角函数.四.课后作业:10
三角函数的诱导公式(三)一、复习:诱导公式(一)诱导公式(二)诱导公式(三)诱导公式(四)sin(p-a)=sinacos(p-a)=-cosatan(p-a)=-tana诱导公式(五)诱导公式(六)二、新课讲授:练习1.将下列三角函数转化为锐角三角函数:练习2:求下列函数值:例1.证明:(1)(2)例2.化简:解:例4.小结:①三角函数的简化过程图:公式一或二或四任意负角的三角函数任意正角的三角函数00~3600间角的三角函数00~900间角的三角函数查表求值公式一或三②三角函数的简化过程口诀:负化正,正化小,化到锐角就行了.练习3:教材P28页7.10
化简:例5.三.课堂小结①熟记诱导公式五、六;②公式一至四记忆口诀:函数名不变,正负看象限;③运用诱导公式可以将任意角三角函数转化为锐角三角函数.四.课后作业:10
您可能关注的文档
- 湖北省恩施巴东县第一高级中学高中数学 1.3三角函数的诱导公式教案 新人教A版必修4
- 湖北省恩施巴东县第一高级中学高中数学 1.6三角函数模型的简单应用(1)教案 新人教A版必修4
- 湖北省恩施巴东县第一高级中学高中数学 1.2.2同角三角函数的基本关系教案 新人教A版必修4
- 甘肃省金昌市第一中学2014高中数学 3.1.2 随机事件的概率(第2课时)学案 新人教A版必修3
- 甘肃省金昌市第一中学2014高中数学 3.1.3 随机事件的概率(第3课时)学案 新人教A版必修3
- 甘肃省金昌市第一中学2014高中数学 2.2.3 用样本估计总体(第3课时)学案 新人教A版必修3
- 湖北省恩施巴东县第一高级中学高中数学 1.1分类加法计数原理和分步乘法计数原理教案 新人教版选修2-3
- 甘肃省金昌市第一中学2014高中数学 2.2.4 用样本估计总体(第4课时)学案 新人教A版必修3
- 甘肃省金昌市第一中学2014高中数学 2.1.1 简单随机抽样教案 新人教A版必修3
- 甘肃省金昌市第一中学2014高中数学 1.2.3 循环语句教案 新人教A版必修3
相关文档
最近下载
- • 湖北省恩施巴东县第一高级中学高中数学 1.3三角函数的诱导公式教案 新人教A版必修4
- • 湖北省恩施巴东县第一高级中学高中数学 1.6三角函数模型的简单应用(1)教案 新人教A版必修4
- • 湖北省恩施巴东县第一高级中学高中数学 1.2.2同角三角函数的基本关系教案 新人教A版必修4
- • 甘肃省金昌市第一中学2014高中数学 3.1.2 随机事件的概率(第2课时)学案 新人教A版必修3
- • 甘肃省金昌市第一中学2014高中数学 3.1.3 随机事件的概率(第3课时)学案 新人教A版必修3
- • 甘肃省金昌市第一中学2014高中数学 2.2.3 用样本估计总体(第3课时)学案 新人教A版必修3
- • 湖北省恩施巴东县第一高级中学高中数学 1.1分类加法计数原理和分步乘法计数原理教案 新人教版选修2-3