- 194.50 KB
- 2023-12-09 21:20:02 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
www.ks5u.com教学目标:1.正确理解样本数据方差、标准差的意义和作用,2.学会计算数据的方差、标准差;3.会用样本的基本数字特征估计总体的基本数字特征.教学方法:引导发现、合作探究.教学过程:一、创设情景,揭示课题有甲、乙两种钢筋,现从中各抽取一个标本(如表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.甲110120130125120125135125135125乙115100125130115125125145125145提出问题:哪种钢筋的质量较好?二、学生活动由图可以看出,乙样本的最小值100低于甲样本的最小值100,最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.
我们把一组数据的最大值与最小值的差称为极差(range).由图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.考察样本数据的分散程度的大小,最常用的统计量是方差和标准差.三、建构数学1.方差:2.标准差:标准差也可以刻画数据的稳定程度.3.方差和标准差的意义:描述一个样本和总体的波动大小的特征数,标准差大说明波动大.四、数学运用例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8解:甲品种的样本平均数为10,样本方差为÷5=0.02.乙品种的样本平均数也为10,样本方差为÷5=0.24因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.例2 为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100
只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差.天数151~180181~210211~240241~270271~300301~330331~360361~390灯泡数1111820251672分析 用每一区间内的组中值作为相应日光灯的使用寿命,再求平均寿命.解:各组中值分别为165,195,225,285,315,345,375,由此算得平均数约为165×1%+195×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天)这些组中值的方差为1/100×=2128.60(天2).故所求的标准差约(天)答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天.巩固深化,反馈矫正:(1)课本第71页练习第2,4,5题;(2)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为;五、归纳整理,整体认识1.用样本的数字特征估计总体的数字特征分两类:(1)用样本平均数估计总体平均数.(2)用样本方差、标准差估计总体方差、标准差.样本容量越大,估计就越精确.2.方差、标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.