• 1.15 MB
  • 2023-11-23 17:50:07 发布

4.6 两条平行线间的距离-20春七年级数学下册(XJ)--2教案

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
4.6 两条平行线间的距离1.理解公垂线、公垂线段的概念;                 2.理解两平行线之间的距离的概念,并能度量两平行线之间的距离.一、情境导入如图是两条笔直的铁轨,它们之间的距离处处相等吗?二、合作探究探究点一:公垂线段的概念及其性质如图,点A、B在直线l1上,点C、D在直线l2上,l1∥l2,CA⊥l1,BD⊥l2,AC=3cm,则BD=________.解析:因为l1∥l2,CA⊥l1,BD⊥l2,所以AC、BD是l1与l2的公垂线段,因此AC=BD,又因为AC=3cm,所以BD=3cm.故答案为3cm.方法总结:两条平行线的所有公垂线段都相等,可利用它求线段长或与线段有关的问题.探究点二:两条平行线间的距离【类型一】两条平行线间的距离如图,直线AB∥MN∥CD.直线MN上一点P到直线AB,AC,CD的距离相等,即PE=PF=PG.直线AB与MN的距离和直线CD与MN的距离相等吗?说明理由.解析:根据两平行线间的距离的概念可知,直线AB与MN的距离就是点P到AB的距离,直线CD与MN的距离就是点P到CD的距离,故可知所要说明的两个距离相等.解:相等.理由如下:因为PE,PG的长分别是直线AB与MN的距离和直线CD与MN的距离,而PE=PG,所以直线AB与MN的距离和直线CD与MN的距离相等.方法总结:我们可以把求两条平行直线的距离转化为求点到直线的距离. 【类型二】平行线间的距离与分类讨论已知直线a∥b∥c,a与b的距离是6cm,a与c的距离是4cm,求b与c之间的距离.解析:分两种情况:c在a与b之间与c不在a与b之间.解:①当c在a与b之间时,c与b的距离为6-4=2(cm);②当c不在a与b之间时,c与b相距为6+4=10(cm).所以b与c之间的距离是2cm或10cm.方法总结:本题考查的是求两条平行线间的距离,注意分类讨论,不要漏解.三、板书设计1.公垂线段(1)概念(2)性质2.两条平行线间的距离本节课通过生活中的实例引入,让学生理解公垂线、公垂线段、两条平行线间的距离等概念,对于没有给出图形的三条平行线,在求距离时要注意分情况讨论,不要漏解