- 1.06 MB
- 2023-11-18 17:20:02 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
11.3.2 多边形的内角和
1.理解多边形内角和公式的推导过程,并掌握多边形的内角和与外角和公式.(重点)
2.灵活运用多边形的内角和与外角和定理解决有关问题.(难点)
一、情境导入
多媒体演示:清晨,小明沿一个多边形广场周围的小路按逆时针方向跑步.
提出问题:
(1)小明是沿着几边形的广场在跑步?
(2)你知道这个多边形的各部分的名称吗?
(3)你会求这个多边形的内角和吗?
导入:小明每从一条小路转到下一条小路时,身体总要转过一个角,你知道是哪些角吗?
你知道它们的和吗?就让我们带着这些问题同小明一起走进今天的课堂.
二、合作探究
探究点一:多边形的内角和
【类型一】 利用内角和求边数
一个多边形的内角和为540,则它是( )
A.四边形 B.五边形
C.六边形 D.七边形
解析:熟记多边形的内角和公式(n-2)180.设它是n边形,根据题意得(n-2)180=540,解得n=5.故选B.
方法总结:熟记多边形的内角和公式是解题的关键.
【类型二】 求多边形的内角和
一个多边形的内角和为1800,截去一个角后,得到的多边形的内角和为( )
A.1620 B.1800
C.1980 D.以上答案都有可能
解析:1800180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620,1800,1980.故选D.
方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.
【类型三】 复杂图形中的角度计算
如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )
A.450 B.540
C.630 D.720
解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540,故选B.
方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.
【类型四】 利用方程和不等式确定多边形的边数
一个同学在进行多边形的内角和计算时,求得内角和为1125,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?
解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.
解:设此多边形的内角和为x,则有1125<x<1125+180,即1806+45<x<1807+45,因为x为多边形的内角和,所以它是180的倍数,所以x=1807=1260.所以7+2=9,1260-1125=135.因此,漏加的这个内角是135,这个多边形是九边形.
方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.
探究点二:多边形的外角和
【类型一】 已知各相等外角的度数,求多边形的边数
正多边形的一个外角等于36,则该多边形是正( )
A.八边形 B.九边形
C.十边形 D.十一边形
解析:正多边形的边数为36036=10,则这个多边形是正十边形.故选C.
方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.
【类型二】 多边形内角和与外角和的综合运用
一个多边形的内角和与外角和的和为540,则它是( )
A.五边形 B.四边形
C.三角形 D.不能确定
解析:设这个多边形的边数为n,则依题意可得(n-2)180+360=540,解得n=3,∴这个多边形是三角形.故选C.
方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
三、板书设计
多边形的内角和与外角和
1.性质:多边形的内角和等于(n-2)180;多边形的外角和等于360.
2.多边形的边数与内角和、外角和的关系:
(1)n边形的内角和等于(n-2)180(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180.
(2)多边形的外角和等于360,与边数的多少无关.
(3).正n边形:正n边形的内角的度数为,外角的度数为.
本节课先引导学生用分割的方法得到四边形内角和,再探究多边形的内角和,然后采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决.
您可能关注的文档
- 11.3.2 多边形的内角和1-人教版数学八年级上册教学资源
- 11.1.1 三角形的边1-人教版数学八年级上册教学资源
- 11.1.2 三角的高、中线与角平分线2-人教版数学八年级上册教学资源
- 11.1.1 三角形的边3-人教版数学八年级上册教学资源
- 11.2.2 三角形的外角2-人教版数学八年级上册教学资源
- 11.2.1 三角形的内角2-人教版数学八年级上册教学资源
- 16.2 第2课时 二次根式的除法-人教版数学八年级下册教学资源
- 11.1.3 三角形的稳定性1-人教版数学八年级上册教学资源
- 11.3.2 多边形的内角和2-人教版数学八年级上册教学资源
- 11.3.1 多边形1-人教版数学八年级上册教学资源